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Abstract

Mammalian spatial navigation systems utilize several different sensory infor-

mation channels. This information is converted into a neural code that represents

the animal’s current position in space by engaging place cell, grid cell, and head

direction cell networks. We begin by analyzing a classical model of short term

memory, wherein stationary pulse solutions (bumps) correspond to a mammal’s

representation of position in two dimensions. Neural fields are integrodifferen-

tial equations whose integral kernel describes the strength and polarity of synap-

tic interactions between neurons at different locations in the network. Through

asymptotic analysis, we can study the effects of weak external inputs into the net-

work. We find bumps tend to drift towards local attractors endowed by external

inputs. Furthermore, when weak spatiotemporal noise is introduced, bumps tend

to diffuse. This can disrupt the position code over short time windows, causing a

degradation in location recollection. To address position errors induced by noise,

we introduce a novel addition to the model that incorporates the effects of sensory

landmarks. Through the inclusion of an external control signal, representing the

effects of sensory landmarks in a given environment, errors can be reduced signif-

icantly. Our analysis concludes with extensions to multilayer (coupled) networks.

We can again derive a low-dimensional approximation of the network dynamics

that describes how heterogeneity, noise, and velocity input impact bump position.

In particular, we find excitatory synaptic coupling between layers promotes cor-

rect velocitiy integration by reducing the effects of noise, a phenomena known as

‘reliability through redundancy’.
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Chapter 1
Introduction

1.1 Biological Motivation

Spatial working memory tasks test the brain’s ability to encode information for

short periods of time [65, 114]. A subject’s performance during such tasks can

be paired with brain recordings to help determine how neural activity patterns

represent memory during a trial [70]. When a monkey is trained to recall the

specific position of a cue, the network location of persistent activity encodes the

corresponding cue location. Any displacement of the persistent activity from its

initial location is reflected by errors the monkey makes in recalling the cue’s po-

sition [160]. In a related way, persistent activity in the entorhinal cortex [73] and

hippocampus [32] can store an animal’s physical location in its environment, con-

stituting an internal “global positioning system” [1]. In general, working memory

involves the retention of information for time periods lasting a few seconds [11],
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Figure 1.1: Example of a spatial working memory task. (A) A monkey is presented
a visual cue at a fixed angle. The cue is then removed while the monkey attempts
to remember its location. After a few seconds, the monkey is allowed to move its
eyes to the direction of the cue. (B) Diagram of the activity of a single prefontal
neuron during the task. (C) Activity of the network in time, wherein localized
neural activity tends to diffuse during the delay period. Adapted from [41]

operating on the order of milliseconds. More specifically, spatial working memory

involves the short term storage of a spatial variable, such as idiothetic location [33]

or a location on a visual display [54]. While most studies of spatial working mem-

ory tend to focus on recalling an analog variable in one-dimension [150], networks

performing tasks such as spatial navigation have been shown to represent space

in two [107] and even three dimensions [165].

In addition to the short term storage of location, several networks of the brain

2
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can integrate velocity signals to update a remembered position [109]. Angular ve-

locity of the head is used by the vestibular system to update memory of heading

direction [141]. Furthermore, intracellular recordings from goldfish demonstrate

that eye position can be tracked by neural circuits that integrate saccade velocity

to update memory of eye orientation [3]. Velocity integration has also been iden-

tified in place cell and grid cell networks, which track an animal’s idiothetic loca-

tion [68, 73, 157]. While these networks each possess distinct circuit mechanisms

for integrating and storing information, the general dynamics of their stored po-

sition variables tends to be similar [107].

However, there are a number of potential sources of error to this velocity inte-

gration mechanism. The nervous system itself is prone to a wide variety of noise

sources due to channel fluctuations, synaptic failures, or even stochastic network-

wide events [57]. This could lead to faulty communication of velocity or head

direction signals, or it could corrupt the storage of the position signal [140]. Fur-

thermore, the network that integrates the velocity signal may be comprised of

architecture that is heterogeneous, providing an imperfect summation of velocity

inputs [26]. Any inaccuracy in the represented position or velocity will be com-

pounded over time, as the neural code continues to trace the animal’s true path

[93, 146].

Fortunately, path integration is not the sole navigational technique of the mam-

malian brain; landmarks detected by the sensory system help anchor and correct

the integrated velocity signal [39, 56, 138]. Several experiments have demon-

strated that mammals’ representation of space is sharpened in the presence of

3
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a wall. The BVC model further assumes that distances to 
geometrical boundaries are continuously available to the 
animal; an assumption that could perhaps hold true for 
indoor laboratory experiments, but seems less likely for 
rats navigating through borderless agricultural fields121, 
or for bats flying at a height of 500 m (REF. 82).

A very different model — the view-based model122,123 
— takes as its input a realistic full retinal image (along 
with path-integration information). This, via sev-
eral interconnected populations of neurons, eventu-
ally drives the firing of place cells and head-direction 
cells (FIG. 2c). In this model, positional and directional 
information are derived directly from the raw retinal 
image, without using any abstract geometric or land-
mark information or an external compass input. The 
model utilizes the rich information available in natural 
panoramic visual scenes: this makes the model rela-
tively insensitive to specific details of the image, and 
thus allows robust spatial representation and navigation 
even in the absence of prominent landmarks122,124. This 
highlights the need to examine more closely the level 
of abstraction that animals use for real-life navigation: 
for example, one question is whether mammals use the 
full retinal image, as was proposed for some insects124. 
In the case of bats, could they use an analogous mecha-
nism based on the full echoic soundscape? Or perhaps 
animals primarily use abstracted geometric borders or 
isolated landmarks?

Many animals dynamically change their sensory 
sampling rate (BOX 1, see the figure part b), thus alter-
ing the resolution of the incoming sensory information. 
Therefore, for both of these models, one question is how 
changes in sensory resolution would affect the size of 
place fields (BOX 2). This question has been addressed 
in the BVC model by simulations in which the sensory 
tuning was degraded, which led to wider BVC activity 
bands and, in turn, increased place-field size (FIG. 2b). 
For the view-based model, place-field size has been 
compared for high-resolution visual input versus visual 
input with degraded angular resolution: these simula-
tions showed that the average place-field size increases 
substantially when the visual input is blurred (FIG. 2c). 
Thus, both of these sensory-based models predict that 
sensory resolution affects the size of hippocampal place 
fields, which in turn determines the resolution of the 
spatial map. This prediction is indeed supported by sev-
eral experimental studies (BOX 2).

Finally, we note that spatial resolution can be 
improved by pooling information across neurons15. 
Thus, if specific spatial locations are over-represented 
by a larger number of neurons, the ensemble resolu-
tion at that location will be higher even if individual 
place-field sizes are constant across the arena. Non-
uniform densities of place fields near ‘important’ loca-
tions (such as the location of hidden food rewards or 
the hidden platform in a water maze) were indeed 
found in several laboratory studies17,125. This might 
imply that navigational accuracy is improved at such 
over-represented locations; this prediction awaits 
experimental testing.

From maps to real-world navigation
So far, the spatial cells described above have been tested 
only in small-scale, artificial laboratory environments 
that are also impoverished in sensory cues compared to 
the natural environment. Are these cell types relevant 
to real-life navigation (BOX 3)?

Box 2 | Sensory resolution affects spatial-map resolution

Although it is commonly thought that hippocampal place-field sizes are relatively 
uniform in a given environment (possibly reflecting path-integration processes that 
are largely independent of external sensory cues102), two theoretical sensory-based 
models for place-cell generation — the boundary vector cell (BVC) model (FIG. 2b) and 
the view-based model (FIG. 2c) — predict that changes in sensory resolution should 
affect the size of hippocampal place fields. This prediction is supported by several 
experimental findings in rats and bats. Two recent studies showed that rat place fields 
were significantly smaller when visual landmarks were present than when they were 
absent171,172. In a different experiment, rats were tested on a smooth featureless 
running track or on a track that contained a rich set of somatosensory and olfactory 
cues. Place fields were significantly smaller in the latter condition173 (see the figure, 
part a; in the right panel, the width of place fields is indicated by the width of the 
population-vector decorrelation). In addition, place fields in rats tend to be smaller for 
locations near the walls of the arena during open-field exploration174, which may 
result from the higher whisking rate near the walls70 (BOX 1). Finally, in big brown bats, 
place fields are small when tested immediately after each echolocation pulse, when 
the animal receives rich echoic sensory information, but rapidly diffuse within a few 
hundred milliseconds175 (see the figure, part b, for an example (left panels) and for 
population data (right panel) showing place-field widening after each sonar pulse). 
The place fields then shrink back upon arrival of a new pulse carrying sensory 
information175. All of these results are consistent with the notion that sensory 
resolution determines spatial resolution.

Several additional experiments in bats could test this prediction more directly. First, 
the sonar signal-to-noise ratio could be reduced by parametrically varying the levels of 
background acoustic noise. According to the BVC and view-based models, this should 
increase the place-field size. Second, place-field size could be examined near walls and 
goals, where bats use high-bandwidth sonar pulses (BOX 1), and we might therefore 
expect53,69,176 smaller place-field size. Third, place-field sizes could be compared under 
conditions in which the bat uses pure vision versus pure echolocation. Vision in 
Egyptian fruit bats provides a better angular sensory resolution than echolocation56,84. 
We would therefore predict that in these bats, place fields will be systematically 
smaller when using vision than when using echolocation. These three proposed 
experiments may cleanly isolate the effects of variations in sensory resolution, and how 
it translates to hippocampal spatial resolution.

The figure, part a, right, is adapted with permission from REF. 173, Society for 
Neuroscience; part b is adapted with permission from REF. 175, © Wiley-Liss, Inc.

REVIEWS

98 | FEBRUARY 2015 | VOLUME 16  www.nature.com/reviews/neuro

© 2015 Macmillan Publishers Limited. All rights reserved

Nature Reviews | Neuroscience

a  Spatial coding sharpens in cue-rich versus cue-poor environments

b  Place fields broaden with time after each sonar pulse

0−7� ms

6KmG YKPFQY CȎGT UQPCT RWNUG  

7�−210 ms 210−540 ms  540 ms

6KmG CȎGT RWNUG 
mU�
5R

CV
KC

N U
GN

GE
VK

XK
V[


�
 E

JC
PI

G�

0 1�000
s2�

0

&KUVCPEG QP VTCEM 
Em�

2Q
RW

NC
VK

QP
�X

GE
VQ

T
EQ

TT
GN

CV
KQ

P

s50 0 50

0
s0.2

0.2
0.4
0.6
0.�

1

0.3 m

a wall. The BVC model further assumes that distances to 
geometrical boundaries are continuously available to the 
animal; an assumption that could perhaps hold true for 
indoor laboratory experiments, but seems less likely for 
rats navigating through borderless agricultural fields121, 
or for bats flying at a height of 500 m (REF. 82).

A very different model — the view-based model122,123 
— takes as its input a realistic full retinal image (along 
with path-integration information). This, via sev-
eral interconnected populations of neurons, eventu-
ally drives the firing of place cells and head-direction 
cells (FIG. 2c). In this model, positional and directional 
information are derived directly from the raw retinal 
image, without using any abstract geometric or land-
mark information or an external compass input. The 
model utilizes the rich information available in natural 
panoramic visual scenes: this makes the model rela-
tively insensitive to specific details of the image, and 
thus allows robust spatial representation and navigation 
even in the absence of prominent landmarks122,124. This 
highlights the need to examine more closely the level 
of abstraction that animals use for real-life navigation: 
for example, one question is whether mammals use the 
full retinal image, as was proposed for some insects124. 
In the case of bats, could they use an analogous mecha-
nism based on the full echoic soundscape? Or perhaps 
animals primarily use abstracted geometric borders or 
isolated landmarks?

Many animals dynamically change their sensory 
sampling rate (BOX 1, see the figure part b), thus alter-
ing the resolution of the incoming sensory information. 
Therefore, for both of these models, one question is how 
changes in sensory resolution would affect the size of 
place fields (BOX 2). This question has been addressed 
in the BVC model by simulations in which the sensory 
tuning was degraded, which led to wider BVC activity 
bands and, in turn, increased place-field size (FIG. 2b). 
For the view-based model, place-field size has been 
compared for high-resolution visual input versus visual 
input with degraded angular resolution: these simula-
tions showed that the average place-field size increases 
substantially when the visual input is blurred (FIG. 2c). 
Thus, both of these sensory-based models predict that 
sensory resolution affects the size of hippocampal place 
fields, which in turn determines the resolution of the 
spatial map. This prediction is indeed supported by sev-
eral experimental studies (BOX 2).

Finally, we note that spatial resolution can be 
improved by pooling information across neurons15. 
Thus, if specific spatial locations are over-represented 
by a larger number of neurons, the ensemble resolu-
tion at that location will be higher even if individual 
place-field sizes are constant across the arena. Non-
uniform densities of place fields near ‘important’ loca-
tions (such as the location of hidden food rewards or 
the hidden platform in a water maze) were indeed 
found in several laboratory studies17,125. This might 
imply that navigational accuracy is improved at such 
over-represented locations; this prediction awaits 
experimental testing.

From maps to real-world navigation
So far, the spatial cells described above have been tested 
only in small-scale, artificial laboratory environments 
that are also impoverished in sensory cues compared to 
the natural environment. Are these cell types relevant 
to real-life navigation (BOX 3)?

Box 2 | Sensory resolution affects spatial-map resolution

Although it is commonly thought that hippocampal place-field sizes are relatively 
uniform in a given environment (possibly reflecting path-integration processes that 
are largely independent of external sensory cues102), two theoretical sensory-based 
models for place-cell generation — the boundary vector cell (BVC) model (FIG. 2b) and 
the view-based model (FIG. 2c) — predict that changes in sensory resolution should 
affect the size of hippocampal place fields. This prediction is supported by several 
experimental findings in rats and bats. Two recent studies showed that rat place fields 
were significantly smaller when visual landmarks were present than when they were 
absent171,172. In a different experiment, rats were tested on a smooth featureless 
running track or on a track that contained a rich set of somatosensory and olfactory 
cues. Place fields were significantly smaller in the latter condition173 (see the figure, 
part a; in the right panel, the width of place fields is indicated by the width of the 
population-vector decorrelation). In addition, place fields in rats tend to be smaller for 
locations near the walls of the arena during open-field exploration174, which may 
result from the higher whisking rate near the walls70 (BOX 1). Finally, in big brown bats, 
place fields are small when tested immediately after each echolocation pulse, when 
the animal receives rich echoic sensory information, but rapidly diffuse within a few 
hundred milliseconds175 (see the figure, part b, for an example (left panels) and for 
population data (right panel) showing place-field widening after each sonar pulse). 
The place fields then shrink back upon arrival of a new pulse carrying sensory 
information175. All of these results are consistent with the notion that sensory 
resolution determines spatial resolution.

Several additional experiments in bats could test this prediction more directly. First, 
the sonar signal-to-noise ratio could be reduced by parametrically varying the levels of 
background acoustic noise. According to the BVC and view-based models, this should 
increase the place-field size. Second, place-field size could be examined near walls and 
goals, where bats use high-bandwidth sonar pulses (BOX 1), and we might therefore 
expect53,69,176 smaller place-field size. Third, place-field sizes could be compared under 
conditions in which the bat uses pure vision versus pure echolocation. Vision in 
Egyptian fruit bats provides a better angular sensory resolution than echolocation56,84. 
We would therefore predict that in these bats, place fields will be systematically 
smaller when using vision than when using echolocation. These three proposed 
experiments may cleanly isolate the effects of variations in sensory resolution, and how 
it translates to hippocampal spatial resolution.

The figure, part a, right, is adapted with permission from REF. 173, Society for 
Neuroscience; part b is adapted with permission from REF. 175, © Wiley-Liss, Inc.

REVIEWS

98 | FEBRUARY 2015 | VOLUME 16  www.nature.com/reviews/neuro

© 2015 Macmillan Publishers Limited. All rights reserved

A B

Figure 1.2: (A) Schematic of a mammal traversing a one-dimensional track with-
out sensory landmarks (blue) and in the presence of sensory landmarks (red). (B)
Measurements in population-vector correlations show a trend of narrower place
fields in the presence of sensory landmarks (red) compared to the absence of land-
marks (blue). Adapted from [68].

sensory cues (Fig. 1.2B) [2, 12, 145, 169]. Experiments typically compare place

fields of individuals cells - spatial locations where the cell becomes active - in the

presence and absence of sensory landmarks (e.g., steel brush or ticking clock; Fig.

1.2A). For instance, Battaglia et al. (2006), recorded from hippocampal place cells

in rats moving on an annular track [12]. When there were no sensory cues along

the track, the measured place field of an individual cell could differ substantially,

depending on whether the rat was moving clockwise or counterclockwise around

the annulus. This suggests there was some drift in animals’ neural representa-

tion of their position. However, when several position cues were placed along

the track, the clockwise and counterclockwise place fields of individual cells were

strongly correlated. This suggests the sensory cues tightened the navigation sys-

tem’s fine representation of the animal’s spatial position [130]. Similar effects have

been observed in brown bats, whose echolocation signals provide a brief burst of
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1.1. BIOLOGICAL MOTIVATION

rich sensory information, sharpening the animal’s place fields [145]. Thus, sen-

sory cues appear to provide a correction mechanism for the many sources of error

that disrupt position representation and broaden place fields.

Another important feature of spatial working memory, often overlooked in

models, is its distributed nature [79]. Most models focus on the dynamics of

persistent activity representing position memory in a single-layer network [40,

102, 168]. However, extensive evidence demonstrates working memory for visuo-

spatial and idiothetic position is represented in several distinct modules in the

brain that communicate via long-range connectivity [50, 129]. There are many pos-

sible advantages conferred by such a modular organization of networks underly-

ing spatial memory. One well tested theory notes different network layers can

represent position memory on different spatial scales, leading to higher accuracy

within small-scale layers and wider range in large-scale layers [29]. Furthermore,

the information contained in spatial working memory is often needed to plan

motor commands, so it is helpful to distribute this signal across sensory, mem-

ory, and motor-control systems [125]. Another advantage of generating multiple

representations of position memory is that it can stabilize the memory through

redundancy [132]. For instance, coupling between multiple layers of a working

memory network can reduce the effects of noise perturbations, as we have shown

in previous work [86].

In addition to being distributed, the networks that generate persistent activ-

ity underlying spatial working memory also appear to be heterogeneous. For

instance, prefrontal cortical networks possess a high degree of variation in their

5



1.2. NEURAL FIELD MODEL

synaptic plasticity properties as well as their cortical wiring [120, 153]. Further-

more, there is heterogeneity in the way place cells from different hippocampal

regions respond to changes in environmental cues [7, 103]. Along with such

between-region variability, there is local variability in the sequenced reactiva-

tions of place cells that mimic the activity patterns that typically occur during

active exploration [115]. In particular, these reactivations are saltatory, rather than

smoothly continuous, so activity focuses at a discrete location in the network be-

fore rapidly transitioning to a discontiguous location. Such activity suggests that

the underlying network supports a series of discrete attractors, rather than a con-

tinuous attractor [26].

1.2 Neural Field Model

Network models of this activity typically involve local excitation and broader in-

hibition, producing localized activity packets referred to as bump attractors [40, 99].

These models have recently been validated using recordings from oculomotor

delayed-response tasks in monkeys [160] and from grid cell networks of freely

moving rats [166]. This suggests that studying network mechanisms for generat-

ing reliable neural activity dynamics can provide insight into how the brain ro-

bustly performs spatial working memory tasks. We focus on a particular contin-

uum model of neural activity, known as a neural field equation.

The solutions and applications of neural field equations have been studied ex-

tensively [19, 20]. In particular, stationary bumps can be regarded as an idealized
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1.2. NEURAL FIELD MODEL

model of location encoding [4, 102]. Many studies have examined how modifi-

cations into the model impact solutions. These modifications include experimen-

tally verified phenomena such as synaptic heterogeneity [60], short term plasticity

[82], and adaptation [46]. Heterogeneity, for example, can cause discrete attractors

to form in the network, pinning the bump in place [90]. Plasticity itself is a known

mechanism generating heterogeneity by modifying synaptic coupling strengths

[119, 122]. While bumps are a particular class of solutions that arise from a neural

field equation, many other solutions have been studied such as traveling waves,

fronts, and anti-pulse solutions [43, 116].

However, previous work has largely focused on deterministic neural field equa-

tions, ignoring the impact of noise on spatiotemporal dynamics. This is a useful

assumption in analysis, but also disregards features that may be present in the net-

work. While there are a few exceptions [20, 98], to our knowledge no study has

analyzed in detail the impact of noise on neural field models of spatial navigation.

We improve these deterministic models by including dynamic input fluctuations

(noise) and studying their impact on bump attractor dynamics. For example, one

key difference from deterministic models is the absence of purely stationary so-

lutions. Any pinning of the bump, as a result of an input or heterogeneity, is

temporary due to synaptic fluctuations. Another important difference is the im-

pact fluctuations have on velocity integration. The inclusion of noise introduces

an instability in bump position. We address this in Chapters 3 and 4.

As a starting point, we introduce the neural field model [6, 112, 142, 156]

7
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∂u(x, t)
∂t

= −u(x, t) +
∫
Ω

w(x, y) f (u(y, t)) dy, (1.1)

where u(x, t) denotes the total synaptic input to the neural field at the position

x ∈ Ω. The integral term describes the synaptic connectivity of the network, so

that w(x, y) describes the strength (amplitude) and polarity (sign) of connectivity

from neurons at location y to neurons at location x. In Chapter 2, we will use two

dimensional modified Bessel functions of the second kind to generate a Mexican

hat kernel, such that translation symmetry is preserved, i.e. w(x, y) ≡ w(x− y).

This will allow us to write a finite explicit expression for stationary bump solu-

tions through Hankel transforms. In Chapter 3, we will simplify our computa-

tions by considering one-dimensional periodic kernels w(x, y), such as cosine or

a sum of cosines. However, we will allow for a weak heterogeneity, such that

w(x, y) = (1 +εh(y))w(x− y), where h(.) is the function describing the network

heterogeneity. Clearly, if ε ≡ 0, we recover the homogeneous case. Chapter 4 will

utilize similar functions as Chapter 3, but with the assumption that synaptic con-

nectivity in individual layers is heterogeneous, while the connectivity between

layers remains homogeneous.

The function f denotes the firing rate of the model, which is a representation

of the fraction of total active neurons, 0 ≤ f ≤ 1. Experimental data suggests f

should roughly be a sigmoidal function [158]

f (u) =
1

1 + e−γ(u−κ)
(1.2)

where u is the synaptic input, γ is the gain and κ is the threshold. The effective

equations we derive for the stochastic motion of bumps will hold for general firing

8
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rate functions f , but we consider the high gain limit γ → ∞ of (1.2) to compute

the resulting formulas explicitly. In this case [4, 6]

f (u) := H(u−κ) =


1 : u ≥ κ,

0 : u < κ,
(1.3)

so the firing rate function is a Heaviside function.

The neural field equation (1.1) in the absence of noise has been studied exten-

sively, demonstrating a wide variety of neural patterns [6, 48, 101, 112]. However,

our main concern is the impact of noise on stationary bump solutions of (3.1). We

focus on a model that incorporates additive noise into a neural field, an extension

of recent studies that have explored how noise shapes spatiotemporal dynamics

of neural fields in one-dimensional domains [16, 19, 80, 99]. The model takes the

form of a Langevin equation on the domain Ω forced by a spatiotemporal noise

process

du(x, t) =
(
− u(x, t) +

∫
Ω

w(x, y) f (u(y, t)) dy
)

dt +εdW(x, t). (1.4)

The term dW(x, t) is the increment of a spatially varying Wiener process with

spatial correlations defined

〈dW(x, t)〉 = 0, 〈dW(x, t)dW(y, s)〉 = C(x− y)δ(t− s)dtds, (1.5)

so that ε describes the intensity of the noise, which we assume to be weak (ε� 1).

The function C(x− y) describes the spatial correlation in each noise increment be-

tween two points x, y ∈ Ω. The spatial correlation function C(x− y) can be related

directly to the spatial filter F (x− y). First, we note that dW(x, t) can be defined

9
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by convolving a spatially white noise process dY(x, t), satisfying 〈dY(x, t)〉 = 0

and 〈dY(x, t)dY(y, s)〉 = δ(x− y)δ(t− s)dtds, with the filter F (x− y), so

dW(x, t) =
∫
Ω
F (x− y)dY(y, t)dy.

Thus, we can determine how the variance of dW(x, t) depends on the filter F (x−

y) by computing

〈dW(x, t)dW(y, t)〉 =
〈∫

Ω
F (x− x′)dY(x′, t)dx′

∫
Ω
F (y− y′)dY(y′, t)dy′

〉
=
∫
Ω

∫
Ω
F (x− x′)F (y− y′)〈dY(x′, t)dY(y′, t)〉dy′dx′

=
∫
Ω

∫
Ω
F (x− x′)F (y− y′)δ(x′ − y′)dy′dx′δ(t− s)dtds

〈dW(x, t)dW(y, t)〉 =
∫
Ω
F (x− x′)F (y− x′)dx′δ(t− s)dtds

= C(x− y)δ(t− s)dtds, (1.6)

so

C(x− y) =
∫
Ω
F (x− x′)F (y− x′)dx′. (1.7)

The last equality in (1.6) holds due to our definition of dW(x, t). Note that (1.7)

implies that C(x− y) should be an even symmetric function, since the arguments

of both functions F (x) can be exchanged. In other words, the points x and y in

C(x− y) can also be exchanged.

We also consider an external stimulus I(x, t) acting on our stochastic system

(1.4), and our modified model takes the form

du(x, t) =
(
−u(x, t) +

∫
R2

w(x, y) f (u(x, t)) dy + I(x, t)
)

dt +εdW(x, t). (1.8)
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In Chapter 2, we will consider stationary external inputs and analyze the result-

ing dynamics. In Chapters 3 and 4, we will use a spatially constant weak input

I(x, t) ≡ εI(t). Based on a simplified version of the model by [127], neural ac-

tivity bumps are propelled around the network by external velocity inputs that

introduce spatial asymmetry into the balance of excitation and inhibition. A simi-

lar mechanism was utilized by [30] in a two-dimensional model of grid cell activ-

ity. Thus, this framework is a well accepted model of position encoding cells in

hippocampus, entorhinal cortex, and the vestibular system [168].

1.3 Content of Dissertation

The content of the dissertation is as follows. In Chapter 2, we examine the im-

pact of noise on the memory of a two-dimensional continuous variable in a bump

attractor network. In particular, we explore the stochastic motion of bumps in

planar neural fields, reaching beyond current work that tends to explore one-

dimensional domains [19, 80]. Our principal finding is that weak noise causes

stationary bumps to execute two-dimensional Brownian motion, which can be

quantified with an effective diffusion coefficient. Our derivations require the en-

forcement of a solvability condition for the linearization of a nonlinear Langevin

equation on the plane. Since bump position represents a memory of an initial con-

dition, we are interested in what features of the model shape the long term diffu-

sion of the bump. Thus, we also analyze the impact of external inputs on stochas-

tic bump motion, finding they tend to pin the bumps to their peaks. We begin
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Section 2.1 by reviewing previous analyses of existence and stability of radially

symmetric bumps [112], providing intuition for the impact of noise perturbations

on bump position. Subsequently, we derive an effective equation for the dynamics

of radially symmetric bumps subject to weak noise, deriving an effective diffusion

coefficient for the variance of the bump’s position. In Section 2.2, we extend these

results by incorporating the effects of an external input on the stochastic dynamics

of bumps. Inputs stabilize bumps to translating perturbations, so the position of

noise-driven bumps evolves approximately as an Ornstein-Uhlenbeck process in

two dimensions.

Proceeding to Chapter 3, we note recent experiments have examined rodent

navigation on an annular track [12]. Thus, we introduce a neural field model of

spatial navigation in a one-dimensional periodic domain, which combines path

integration and sensory cue feedback. Errors in the path integration signal will

arise, in our model, due to internal disruptions of an accurately delivered velocity

input. Based on a double ring network model of the head-direction system [164],

we can reformulate a constant external input, acting as the velocity input, into a

single bump attractor model describing the impact of the input on the synaptic

connectivity (Appendix A). Sensory cues are assumed to provide a reliable esti-

mate of the animal’s true position. This position is then compared with the place

cell network’s estimate of position. Any discrepancy in the position estimate is

then translated into a corrective velocity input, which is added to the baseline

velocity input (Fig. 3.1A). Even when the cues occur discretely in space, this

mechanism works well for reducing the long term error in the position estimate.
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Through asymptotic analysis, we can derive a low-dimensional approximation

for the dynamics of bump position in the neural field model (Section 3.2). This

reduction reveals the relative influence of velocity inputs, sensory feedback, and

heterogeneity on the animal’s perceived position of its current location.

Ultimately, this allows us to calculate the impact of various control strategies

on the error between the animal’s perceived position and true position (Section

3.3). Our main finding is that there is an optimal control strength at which the

long term error of the network is minimized. Our findings are similar in the case

that errors arose due to dynamic noise fluctuations (Subsection 3.3.2), rather than

synaptic heterogeneities (Subsection 3.3.1). In this case, the low-dimensional ap-

proximation of the neural field is a stochastic differential equation whose variance

we can evaluate explicitly.

Finally, Chapter 4 concludes by examing how the architecture of multilayer

networks impacts the quality of the encoded spatial memory. Previous work has

examined networks whose interlaminar connectivity was weak and/or symmet-

ric, ignoring the effects of spatial heterogeneity in constituent layers [86, 88]. In

this work, we will depart from the limit of weak coupling, and derive effective

equations for the dynamics of bumps whose positions encode a remembered lo-

cation. Through the use of linearization and perturbation theory, we can thus

determine how both the spatial heterogeneity of individual layers and the cou-

pling between layers impact spatial memory storage. Previous work has also

shown that spatial heterogeneity can help to stabilize memories of a stationary
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position [91], but such heterogeneities also disrupt the integration of velocity in-

puts [118]. Thus, it is important to understand the advantages and drawbacks of

heterogeneities, and quantify how they trade off with one another.

We focus on a multilayer neural field model of spatial working memory, with

arbitrary coupling between layers and spatial heterogeneity within layers. Fur-

thermore, as we are interested in both the retention of memory and the integration

of input, we incorporate a velocity-based modulation to the recurrent connectivity

which is non-zero when the network receives a velocity signal [168]. The station-

ary bump solutions of this network are analyzed in Section 4.2. Since the effects of

velocity input and heterogeneity are presumed to be weak, the stationary bump

solutions only depend upon the connectivity between layers. Analyzing the sta-

bility of bumps, we can determine the marginally stable modes of these bump so-

lutions which will be susceptible to noise perturbations. Subsequently, we derive

a one-dimensional stochastic equation that describes the response of the bump

solutions to noise, velocity input, and spatial heterogeneity. With this approxima-

tion in hand, we can determine the effective diffusion and velocity of bumps using

asymptotic methods, which compare well with numerical simulations of the full

model (Section 4.3). Lastly, we analyze more nuanced architectures in Section 4.4,

whose bump solutions possess multiple marginally stable modes. As a result, we

find we must derive multi-dimensional stochastic equations to describe their dy-

namics in response to noise. Our work examines in detail the effects of modular

network architecture on the coding of spatial working memory.
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Chapter 2
Dynamics of Bumps in a Model of

Spatial Working Memory

2.1 Wandering bumps in R2

We begin by studying bumps in the unbounded domain Ω = R2, first in the ab-

sence of noise (1.1) and then in the presence of additive noise (1.4). Recent stud-

ies have shown traveling waves and bumps in stochastic neural fields wander

diffusively about their mean position, but these analyses have focused on one-

dimensional domains [19, 90]. Our analysis will allow us to approximate the dif-

fusion coefficient of a bump driven by noise in a two-dimensional domain. Since

we are exploring the model (1.4) in R2, we can utilize Hankel transforms to com-

pute integral terms [61].
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2.1.1 Existence and stability of bumps

To begin, we review prior results constructing rotationally symmetric stationary

bump solutions in the noise-free system [6, 112, 142],

∂u(x, t)
∂t

= −u(x, t) +
∫
Ω

w(x, y) f (u(y, t))dy. (1.1)

Specifically, we employ the assumption that the weight function (2.2) is rotation-

ally symmetric to look for stationary solutions of the form u(x, t) := U(x) =

U(||x||). Recall u(x, t) is the neural activity at location x = (x1, x2) ∈ R2 at time t.

In this case, the neural field equation (1.1) simplifies to

U(||x||) =
∫
R2

w(x− y) f (U(y))dy. (2.1)

In our analysis, we utilize a sum of N + 1 modified Bessel functions as our weight

function

w(x− y) =
N

∑
j=0

c jK0(α j||x− y||), (2.2)

where Kv is a modified Bessel function of the second kind of order v. The constants

c j andα j scale the amplitude and spatial decay of the jth term in the Bessel func-

tion sum. One advantage of the weight function (2.2) is that integrals arising in

(1.1) can be computed analytically with the aid of Hankel transforms [61, 101, 112].

Note that ||.|| denotes the standard Euclidean 2-norm

||x|| =
√

x2
1 + x2

2

so that w of the form (2.2) will be radially symmetric. By changing variables to

polar coordinates x = (x1, x2) 7→ r = (r,θ), we can convert (2.1) to a double
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integral of the form

U(r) =
∫ 2π

0

∫ ∞
0

w(|r− r′|) f (U(r′))r′dr′dθ′. (2.3)

Note that if we assume a Heaviside firing rate function (1.3), then (2.3) becomes

U(r) =
∫ 2π

0

∫ a

0
w(|r− r′|)r′dr′dθ′, (2.4)

where U(r) > κ when r < a and U(r) < κ when r > a, so that r ≡ a defines the

boundary of the bump. An advantage of using a Heaviside firing rate function

(1.3) is that the stability of the bump can be probed by analyzing the dynamics of

the boundary. When we analyze the stochastic motion of the bump, we will also

derive effective equations by focusing on perturbations of the bump boundary by

spatiotemporal noise. We can evaluate the integral in (2.4) using Hankel transform

and Bessel function identities, as in [61, 112]

U(r) =
∫ ∞

0
ŵ(ρ)J0(rρ)J1(aρ)dρ, (2.5)

where Jν(z) is a Bessel function of the first kind of order ν and the Hankel trans-

form is defined as

ŵ(ρ) =
∫
R2

eih·rw(r)dr,

where ρ = ||h||.

To illustrate our analysis, we consider the weight (2.2) given by a sum of mod-

ified Bessel functions [112]. Using the fact that the corresponding Hankel trans-

form of K0(sr) isH(ρ, s) = (ρ2 + s2)−1, we have

ŵ(ρ) =
N

∑
j=1

c jH(ρ,α j). (2.6)

17
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Figure 2.1: Stationary bump solutions u(x, t) = U(r) to the deterministic model
(1.1) with weight function (2.2) and Heaviside firing rate (1.3). (A) A wider
stable (solid) and narrower unstable (dashed) branch of solutions to U(a) = κ

emerges from a saddle-node bifurcation at a critical value of κ above which no
solutions exist. Weight function parameters are (left to right) [c1, c2, c3, c4] =
[10/9,−10/9,−1/3, 1/3]; [4/3,−4/3,−2/5, 1/3]; [5/3,−5/3,−1/2, 1/2]. (B) An
example of a stationary bump U(x) for the parametersκ = 0.2 and [c1, c2, c3, c4] =
[5/3,−5/3,−1/2, 1/2]. We have fixed [α1,α2,α3,α4] = [1, 2, 1/4, 1/2], as in (2.9).

The bump solution (2.5) can then be evaluated by using the formula (2.6) along

with the identity

∫ ∞
0

J0(ρr)J1(ρa)
ρ2 + s2 dρ ≡ I(a, r, s) =


1
s I1(sa)K0(sr) : r > a,

1
s2a −

1
s I0(sr)K1(sa) : r < a,

(2.7)

where Iν is the modified Bessel function of the first kind of order ν. We can thus

generate an explicit solution for the stationary bump U(r), given

U(r) = 2πa
N

∑
k=0

ckI(a, r,αk).

Applying the threshold condition U(a) = κ, we can generate an implicit equation
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relating the bump radius a with the threshold κ and weight parameters

U(a) = 2πa
N

∑
k=0

ck
αk

I1(αka)K0(αka) = κ. (2.8)

In general, explicit solutions for a cannot be computed and (2.8) must be solved

numerically using root finding algorithms. Note also that satisfaction of the thresh-

old condition (2.8) is not sufficient for proving the existence of a bump. For in-

stance, the possibility of ring solutions must be eliminated by ensuring there are

no other threshold crossing points [48, 112]. Furthermore, we must develop a lin-

ear stability analysis to identify those bumps that will persist in the presence of

perturbations. This will especially be important in our analysis of the stochas-

tic system (1.4), since it will rely on the assumption that the perturbed solution

retains a profile similar to the unperturbed system.

We demonstrate the results of this existence analysis by using a Mexican hat

type weight distribution such as [23, 112]

w(r) = c1K0(r) + c2K0(2r) + c3K0(r/4) + c4K0(r/2), (2.9)

where we have fixed the spatial scales [α1,α2,α3,α4] = [1, 2, 1/4, 1/2] and will

take c1, c4 > 0 and c2, c3 < 0 to generate a lateral inhibitory kernel. Typically,

weight functions like (2.9) lead to a maximum of two bump solutions, as shown

in Fig. 2.1.

As mentioned, we must be aware of the possibility of azimuthal instabilities of

the stationary bump when developing our linear stability theory [21, 112]. Thus,

while it may be convenient to analogize the shifting and expanding/contracting

perturbations of 1D bumps [4] with D1 and circularly symmetric perturbations of
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2D bumps [142], one should be sure not to stop here. A full analysis of azimuthal

perturbations to the bump (2.3), Dn-symmetric perturbations (n ∈ Z, n > 1), is

necessary since bumps can destabilize through such symmetry-breaking instabil-

ities [23, 112]. It is worth noting that this fact was originally identified by Amari

in 1978 [5], and other systematic analyses were carried out in the last decade

[48, 112].

To determine the stability of stationary solution, we will consider small, smooth

perturbations of the stationary bump solution (2.3) of the form u(x, t) := U(x) +

εΨ(x, t) where ε � 1. We substitute this into equation (1.1) and Taylor expand to

linear order to generate the equation

∂Ψ(x, t)
∂t

= −Ψ(x, t) +
∫
R2

w(x− y) f ′(U(y))Ψ(y, t)dy. (2.10)

Applying seperation of variables Ψ(x, t) = Ψ(x)b(t) and rearranging terms results

in the solutions b(t) = eλt and

(λ+ 1)Ψ(x) =
∫
R2

w(x− y) f ′(U(y))Ψ(y)dy. (2.11)

We can immediately identify neutrally stable perturbations, those corresponding

to λ = 0, by letting Ψ(x) = Ux j(x) with j ∈ {1, 2}. We apply integration by parts

and the definition of a stationary solution U given in (2.1) into (2.11) to yield

(λ+ 1)Ux j(x) =
∫
R2

w(x− y) f ′(U(y))Uy j(y) dy =
∫
R2

w(x− y)
∂

∂y j

(
f (U(y))

)
dy

=
∫
R2

∂

∂y j

(
w(x− y)

)
f (U(y)) dy =

∫
R2

∂

∂x j

(
w(x− y)

)
f (U(y)) dy

=
∂

∂x j

( ∫
R2

w(x− y) f (U(y)) dy
)
= Ux j(x). (2.12)
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Thus, by the linearity of the integral

ΨZ(x) = h1Ux1(x) + h2Ux2(x) (2.13)

generates the class of solutions corresponding to the eigenvalue λ1 = 0. Note, we

will not have such a class of perturbations in the case of stationary external inputs,

as the translation symmetry of (1.1) will then be broken.

Prior to analyzing other azimuthal perturbations to the bump (2.3), we briefly

discuss how perturbations of the form (2.13) impact the long term bump position.

In fact, it is precisely this neutral stability of the bump that leads to purely dif-

fusive motion of the bump in the stochastic model (1.4). Specifically, we focus

on the case of a Heaviside firing rate function (1.3), so we can track the position

∆ = (∆1, ∆2) ∈ R2, i.e. the spatial mean, of the bump by utilizing the level set

condition u(x, t) = κ, which can be written

κ =u(a +εb(θ, t),θ, t) = U(a +εb(θ, t)) +εΨ(a +εb(θ, t),θ, t)

κ =U(a) +εU′(a)b(θ, t) +εΨ(a,θ, t) +O(ε2), (2.14)

where b(θ, t) describes the perturbation of the bump boundary R(θ, t) = a +

εb(θ, t) at angular coordinate θ and ε � 1. Note we can employ the stationary

level set condition U(a) = κ to cancel leading order terms in (2.14) to yield [61]

b(θ, t) =
Ψ(a,θ, t)
|U′(a)| +O(ε). (2.15)

If we specifically denote Ψ(a,θ, t) to be a neutrally stable perturbation (2.13), then

Ψ(a,θ, t) = ΨZ(a,θ) and b(θ, t) = b1(θ), so that to first order

b1(θ) =
ΨZ(a,θ)
|U′(a)| =

h1U′(a) cosθ+ h2U′(a) sinθ
|U′(a)| = −h1 cosθ− h2 sinθ, (2.16)
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where we have computed

∂

∂x1
U(||x||)

∣∣∣∣
r=a

= U′(a) cosθ,
∂

∂x2
U(||x||)

∣∣∣∣
r=a

= U′(a) sinθ. (2.17)

Thus, the new bump boundary R0(θ) ≈ a + εb1(θ) can be approximated in polar

coordinates as

R0(θ) = a−εh1 cosθ−εh2 sinθ. (2.18)

This approximates the long-term perturbation to the bump boundary

limt→∞ R(θ, t) ≈ R0(θ) by simply using the leading order term in the expan-

sion b(θ, t) = b1(θ) + ∑
∞
j=0, j 6=1 b j(θ)eλ jt, as limt→∞ b(θ, t) = b1(θ) since all other

Reλ j < 0. This follows from the well known result that circularly symmetric

bump solutions to (1.1) are neutrally stable to D1 symmetric perturbations of the

bump boundary [61, 112]. Now, define the centroid (center of mass) ∆ = (∆1, ∆2)

as the first moments of mass along the x− and y−directions scaled by the to-

tal mass for the lamina ΩR of uniform density enclosed by the curve (2.18). In

Cartesian coordinates, these quantities are given by the double integral formulae

∆1 =
∫ ∫

ΩR
xdxdy/

∫ ∫
ΩR

dxdy and ∆2 =
∫ ∫

ΩR
ydxdy/

∫ ∫
ΩR

dxdy. By utilizing

polar coordinates (x, y) = (r cosθ, r sinθ), and plugging in the formula for the

closed curve R(θ) (2.18), we can compute:

∆1 =

∫ 2π
0
∫ R(θ)

0 r2 cosθdrdθ∫ 2π
0
∫ R(θ)

0 rdrdθ
=

1
3
∫ 2π

0 (a−εh1 cosθ−εh2 sinθ)3 cosθdθ
1
2
∫ 2π

0 (a−εh1 cosθ−εh2 sinθ)2dθ

=
a2

3
∫ 2π

0 (a− 3εh1 cosθ− 3εh2 sinθ) cosθdθ
a
2
∫ 2π

0 (a− 2εh1 cosθ− 2εh2 sinθ) dθ
+O(ε2) ≈ −εh1
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and

∆2 =

∫ 2π
0
∫ R(θ)

0 r2 sinθdrdθ∫ 2π
0
∫ R(θ)

0 rdrdθ
=

1
3
∫ 2π

0 (a−εh1 cosθ−εh2 sinθ)3 sinθdθ
1
2
∫ 2π

0 (a−εh1 cosθ−εh2 sinθ)2dθ

=
a2

3
∫ 2π

0 (a− 3εh1 cosθ− 3εh2 sinθ) sinθdθ
a
2
∫ 2π

0 (a− 2εh1 cosθ− 2εh2 sinθ) dθ
+O(ε2) ≈ −εh2.

Thus a perturbation in the bump profile of the form (2.13) will yield a propor-

tional shift in the bump’s center of mass (∆1, ∆2) = −ε(h1, h2). This foreshadows

the impact of noise-induced perturbations to the bump’s position, which we ex-

plore in Section 2.1.2. Effectively, we will show the primary contribution to the

stochastic motion of bumps is the D1-symmetric portion of the spatiotemporal

noise, which is filtered by the bump as a spatial translation of its boundary and

center of mass.

Lastly, we briefly review the analysis of azimuthal perturbations to the bump

boundary. Note that in the case of a Heaviside firing rate function (1.3), then

f ′(U(x)) = δ(U(r)−κ) = δ(r− a)
|U′(a)| , (2.19)

where U′(a) is the normal derivative of U(x) along the bump boundary r = a, in

polar coordinates r = (r,θ). Thus, the eigenvalue equation (2.11) becomes

(λ+ 1)Ψ(r) =
a

|U′(a)|
∫ 2π

0
w(|r− a′|)Ψ(a,θ′)dθ′, (2.20)

where a′ = (a,θ′) in polar coordinates, equivalently a′ = a(cosθ, sinθ) in Carte-

sian coordinates. Stability of the bump is thus determined by the spectrum of a

compact linear operator acting on continuous, bounded functions Ψ(r,θ) defined

on the disc of radius r ≤ a. The essential spectrum contains functions Ψ(r) that
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vanish on the boundary Ψ(a,θ) = 0 for all θ, so λ = −1, contributing to no in-

stabilities. We can thus identify the discrete spectrum by setting r = a = (a,θ) in

(2.20), so

(λ+ 1)Ψ(a,θ) =
a

|U′(a)|
∫ 2π

0
w
(

2a sin
(
θ−θ′

2

))
Ψ(a,θ′)dθ′,

where we have used the identity

|a− a′| =
√

2a2 − 2a2 cos(θ−θ′) = 2a sin
(
θ−θ′

2

)
.

Any perturbation can be decomposed into the infinite series of Fourier modes

Ψ(a,θ) = ∑
∞
n=0 AnΨn(θ) + BnΨ̄n(θ), where Ψn(θ) = einθ and Ψ̄n(θ) = e−inθ

[60, 112]. We can thus compute all the eigenvalues of the discrete spectrum by

evaluating the expression

λn = −1 +
a

|U′(a)|
∫ 2π

0
w(2a sin(θ/2))e−inθdθ

each associated with Ψn(θ) for n ∈ Z≥0. Note, λn will always be real, since rescal-

ing θ 7→ 2θ:

Im{λn} = −
2a
|U′(a)|

∫ π

0
w(2a sinθ) sin(2nθ)dθ = 0.

Therefore, the eigenvalues are real and

λn = Re{λn} = −1 +
a

|U′(a)|
∫ 2π

0
w(2a sin(θ/2)) cos(nθ)dθ. (2.21)

Note, the bump profile perturbation Ψ(r, t) will be related to the bump bound-

ary perturbation b(θ, t) via the formula (2.15), as discussed above. The nth order

boundary perturbation has Dn symmetry; e.g. n = 0 uniformly expands/con-

tracts the bump, n = 1 shifts the bump.
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By specifying the weight function w(r), we can compute the eigenvalue (2.21)

explicitly using Bessel functions to evaluate the integral

∫ 2π

0
w(|a− a′|) cos(nθ′)dθ′ =

∫ 2π

0

(∫ ∞
0

ŵ(ρ)J0(ρ|a− a′|)ρdρ
)

cosθ′dθ′

= 2π
∫ ∞

0
ŵ(ρ)Jn(ρr)Jn(ρa)ρdρ.

Thus, we can write (2.21) as

λn = −1 +

∫∞
0 ŵ(ρ)Jn(ρr)Jn(ρa)ρdρ∫∞
0 ŵ(ρ)J1(ρr)J1(ρa)ρdρ

.

Since we know λ1 = 0, the bump will be stable if λn < 0 for all n 6= 1. Employing

the general weight distribution (2.2), we find

λn = −1 +
∑

N
j=1 c jKn(α ja)In(α ja)

∑
N
j=1 c jK1(α ja)I1(α ja)

. (2.22)

More specifically, we could focus on the Mexican hat weight distribution (2.9)

along with the parameters given in Fig. 2.1A. Indeed, checking the formula for

the eigenvalues (2.22), we find λn < 0 (n 6= 1) for all solutions along the upper

branch of wide bump solutions.

2.1.2 Effective equations for stochastic bump motion

We now explore how noise impacts the long term position of bumps in the net-

work (1.4). Previous authors have analyzed the impact of noise on waves in

reaction-diffusion [9, 113, 126] and neural field models [16, 19, 90] using small-

noise expansions, but those studies tend to be on one-dimensional domains. Noise
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causes waves to execute an effective Brownian motion in their instantaneous po-

sition. As we will show, this analysis naturally extends to the effective stochas-

tic dynamics of bumps in two-dimensional (2D) domains. The position ∆(t) =

(∆1(t), ∆2(t)) wanders diffusively, as a 2D random walk, as long as noise is small

so that the profile of the bump remains close to the solution of the deterministic

system (1.1). As mentioned, this relies upon the neutral stability of the noise free

system; different behavior will arise when we break this symmetry with inputs,

shown in Section 2.2.

To begin, we assume that the weak additive noise (of O(ε)) in (1.4) affects the

bump in two ways. Both are weak (O(ε)) compared to the amplitude of the bump,

allowing us to exploit regular perturbation theory to analyze the Langevin equa-

tion (1.4). First, the bump diffuses from its original position x on long timescales

according to the stochastic variable ∆(t) = (∆1(t), ∆2(t)) (see Fig. 2.2, for exam-

ple). Second, there are fluctuations in the bump profile on short timescales [9],

according to the expansion εΦ+ ε2Φ1 + ε
3Φ2 + · · · . This suggests the following

ansatz for the impact of noise on the bump solution U(x):

u(x, t) = U(x−∆(t)) +εΦ(x−∆(t), t) + · · · . (2.23)

Substituting (2.23) into (1.4) and truncating toO(1), we find that U(x) still satisfies

(2.1). Proceeding to linear order in ε, we find

dΦ(x, t) = LΦ(x, t) +ε∇U(x) · d∆(t) + dW(x, t), (2.24)
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where ∇U(x) = (Ux1(x), Ux2(x))
T denotes the gradient of U(x) and L is a non-

self-adjoint linear operator of the form

Lp(x) = −p(x) +
∫
R2

w(x− y) f ′(U(y))p(y)dy (2.25)

for any L2 integrable function p(x) on R2. We ensure a bounded solution to (2.24)

exists by requiring the inhomogeneous part is orthogonal to all elements of the

null space of the adjoint operator L∗. The adjoint is defined by utilizing the L2

inner product ∫
R2

[Lp(x)] q(x)dx =
∫
R2

p(x) [L∗q(x)] dx,

where p(x), q(x) are L2 integrable on R2. Thus

L∗q(x) = −q(x) + f ′(U(x))
∫
R2

w(x− y)q(y)dy. (2.26)

The span of the nullspace of L∗ can be described by two functions, which we can

compute explicitly for a general firing rate function. That is, we can find an infinite

number of solutions to the null space equation

ϕ(x) = f ′(U(x))
∫
R2

w(x− y)ϕ(y)dy, (2.27)

which can always be decomposed into a linear combination of two functions

ϕ1(x) and ϕ2(x). Specifically, we take ϕ1(x) = f ′(U(x))Ux1(x) and ϕ2(x) =

f ′(U(x))Ux2(x), and note that by plugging into (2.27), we have

f ′(U(x))Ux j(x) = f ′(U(x))
∫
R2

w(x− y) f ′(U(x))Ux j(y)dy,

which holds due to the equations in (2.12). Thus, we can derive an effective equa-

tion for the position variable ∆(t) by taking the inner product ofϕ1 andϕ2 with
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both sides of (2.24) to yield∫
R2

f ′(U(x))Ux1(x) (Ux1(x)d∆1(t) + Ux2(x)d∆2(t) +εdW(x, t)) dx = 0 (2.28)∫
R2

f ′(U(x))Ux2(x) (Ux1(x)d∆1(t) + Ux2(x)d∆2(t) +εdW(x, t)) dx = 0.

Moreover, we can exploit the odd and even symmetries of the spatial derivatives

Ux1 and Ux2 that must hold since U(x) is radially symmetric. Namely, Ux1 is

odd-symmetric along the x1-axis and even along the x2-axis, and Ux2 is even-

symmetric along the x1-axis and odd along the x2-axis. Lastly, f ′(U(x)) is radially

symmetric since U(x) is. This means
∫
R2 f ′(U(x))Ux1(x)Ux2(x)dx = 0. This al-

lows us to rearrange the system (2.28), yielding a pair of independent equations

for the diffusion of the bump along the x1 and x2 axes

d∆ j(t) = −ε
∫
R2 f ′(U(x))Ux j(x)dW(x, t)dx∫

R2 f ′(U(x))U2
x j
(x)dx

, j ∈ {1, 2}. (2.29)

With the stochastic system (2.29) in hand, we can approximate the effective diffu-

sivity of the bump. First, note that the mean position of the bump averaged across

realizations does not change in time (〈∆(t)〉 = (0, 0)T) since noise has mean zero

(〈W(x, t)〉 = 0). Computing the variance of the stochastic variable ∆(t), we find

it obeys pure diffusion in two-dimensions:

〈∆ j(t)2〉 = ε2

∫
R2
∫
R2 f ′(U(x))Ux j(x) f ′(U(y))Ux j(y)〈W(x, t)W(y, t)〉dydx[∫

R2 f ′(U(x))U2
x j
(x)dx

]2

〈∆ j(t)2〉 = ε2D jt, j ∈ {1, 2}, (2.30)

and using the definition of the spatiotemporal noise W(x, t) in (1.5), we find

D j =

∫
R2
∫
R2 f ′(U(x))Ux j(x) f ′(U(y))Ux j(y)C(x− y)dydx[∫

R2 f ′(U(x))U2
x j
(x)dx

]2 . (2.31)
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Figure 2.2: Numerical simulation of the stochastic neural field (1.4) on the plane
R2 with Heaviside firing rate (1.3) and Bessel function weight (2.2). (A-E) Snap-
shots of a simulation of a bump wandering on the plane, due to noise with spatial
correlation function C(x) = cos(x), at time points t = 0, 100, 200, 300, 400. Thin
lines represents the stochastic trajectory of the bump during the time between
the previous and current snapshot. (F) Plot of the trajectory of the bump cen-
troid for t ∈ [0, 400] demonstrates how its stochastic trajectory behaves as 2D
Brownian motion. Other parameters are κ = 0.2, ε = 0.04, and w is (2.9) with
[c1, c2, c3, c4] = [5/3,−5/3,−1/2, 1/2]. We approximate the center of mass of the
bump using argmaxxu(x, t).

This allows us to calculate the effective diffusion of bumps in the stochastic pla-

nar neural field (1.4). We simply need to compute the constituent functions Ux j

and f ′(U) and evaluate the integrals in (4.3.2), which we now do in the case of

Heaviside firing rates (1.3).
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Figure 2.3: Variance of the bump position ∆(t) = (∆1(t), ∆2(t)) evolving accord-
ing to the stochastic model (1.4) with Heaviside firing rate (1.3) and Bessel func-
tion weight (2.2). (A) Long-term variance 〈∆2

1〉〉 scales linearly as pure diffusion,
and the slope is given by the diffusion coefficient D defined by the formula (2.33).
Parameters are κ = 0.2 and ε2 = 0.05. (B) Plot of the effective diffusion coeffi-
cient ε2 · D versus the activity threshold κ. The weight function w is (2.9) with
[c1, c2, c3, c4] = [5/3,−5/3,−1/2, 1/2]. Numerical variances are computed using
1000 realizations each.

2.1.3 Explicit results for the Heaviside firing rate

We now show that we can explicitly calculate the effective diffusion coefficient

(4.3.2) in the case of a Heaviside firing rate function (1.3), weight kernel comprised

of modified Bessel functions (2.2), and the following cosine noise correlation func-

tion

C(x) = cos(x1) + cos(x2). (2.32)

Analogous to our linear stability calculations, by selecting a Heaviside firing rate

function (1.3), we find that the associated functional derivative f ′(U) is given by

(2.19). Thus, the domain of integration of the terms in (4.3.2) collapse from R2 to

the closed curve r = a, in polar coordinates r = (r,θ). Furthermore, the spatial
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derivatives Ux1 and Ux2 are given by the formulas (2.17), so that we can simply

rewrite the term in the denominator of (4.3.2) as an integral over the angular co-

ordinate θ(∫
R2

f ′(U(x))U2
x j
(x)dx

)2

=

(
1

|U′(a)|
∫ 2π

0

∫ ∞
0
δ(r− a)

[
U′(a) cosθ

]2 rdrdθ
)2

=

(
a

|U′(a)|
∫ 2π

0

[
U′(a) cosθ

]2 dθ
)2

= a2π2U′(a)2.

We can apply a similar approach to the calculation of the numerator of (4.3.2),

given by

a2π2U′(a)2D j =
∫
R2

∫
R2

f ′(U(x))Ux j(x) f ′(U(y))Ux j(y)C(x− y)dydx

= a2
∫ 2π

0

∫ 2π

0
cosθ cosφ C(a(cosθ, sinθ)T − a(cosφ, sinφ)T)dθdφ.

Rewriting by using the cosine correlation function (2.32) and utilizing the identity

cos(x− y) = cos x cos y + sin x sin y, we have

π2U′(a)2D j =

(∫ 2π

0
cos(a cosθ) cosθdθ

)2

+

(∫ 2π

0
cos(a sinθ) cosθdθ

)2

+

(∫ 2π

0
sin(a cosθ) cosθdθ

)2

+

(∫ 2π

0
sin(a sinθ) cosθdθ

)2

.

Applying the substitution v = a sinθ, we find that

∫ 2π

0
cos(a sinθ) cosθdθ =

1
a

∫ a

−a
cos vdv +

1
a

∫ −a

a
cos vdv = 0,∫ 2π

0
sin(a sinθ) cosθdθ =

1
a

∫ a

−a
sin vdv +

1
a

∫ −a

a
sin vdv = 0.
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Furthermore, breaking up the domain of integration of the first summand, we find

∫ 2π

0
cos(a cosθ) cosθdθ =

∫ π
2

− π2
cos(a cosθ) cosθdθ+

∫ 3π
2

π
2

cos(a cosθ) cosθdθ

=
∫ π

2

− π2
cos(a cosθ) cosθdθ+

∫ π
2

− π2
cos(a cos(θ+ π)) cos(θ+ π)dθ

=
∫ π

2

− π2
cos(a cosθ) cosθdθ−

∫ π
2

− π2
cos(a cosθ) cosθdθ = 0.

Lastly, we must compute the remaining summand, for which we make use of

integration by parts

∫ 2π

0
sin(cosθ) cosθdθ = 2a

∫ π

0
sin2θ cos(a cosθ)dθ = 2π J1(a),

where we have made use of the explicit integral representation of a Bessel function

of the first kind of order ν:

Jν(z) =
1
π

zν

(2ν − 1)!!

∫ π

0
sin2ν θ cos(z cosθ)dθ.

Thus, we can finally write

D j =
4J1(a)2

U′(a)2 , j = 1, 2. (2.33)

Effective diffusion along both the x1 and x2 axes is identical, due to radial sym-

metry of the bump along with the D4 symmetry of the correlation function (2.32).

We demonstrate our analytical results, in comparison to statistics from numerical

simulations, in Fig. 2.3.
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2.2 Stimulus-pinned bumps in R2

In this section, we explore how the interaction of external inputs and noise de-

termines the stochastic dynamics of bumps. Previous work has shown in one-

dimensional domains that both external inputs [90] and coupling between bumps

in multiple layers [24, 86, 88] can help stabilize bumps to the translating perturba-

tions of noise. Inputs pin bumps in place so their motion is mostly restricted to the

peak(s) of the input function, and the stochastic variable describing the bump’s lo-

cation can be approximated with a mean-reverting (Ornstein-Uhlenbeck) process.

Thus, we consider an external stationary stimulus I(x) acting on our system (1.8).

The primary forms of input we employ are a radially symmetric Gaussian

I(x) = I(r) = A0e−r2/σ2
, (2.34)

and a translationally symmetric Gaussian

I(x) = I(x1) = A0e−x2
1/σ

2
, (2.35)

where I(x1) denotes independence from the second coordinate of the spatial vec-

tor x = (x1, x2). We begin by reviewing the existence and stability of radially

symmetric bumps in the noise free system (ε → 0), as this foreshadows the im-

pact of inputs on the stochastic dynamics of bumps. Essentially, the local stability

of bumps to translating perturbations is altered by the input’s spatial heterogene-

ity.
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2.2.1 Existence and stability of bumps

We begin by constructing the modified equations for radially symmetric bump

solutions u(x, t) = U(x) = U(r) to the model (1.8) in the absence of noise (ε→ 0).

Previous work has shown that inputs can stabilize stationary bumps in purely

excitatory neural field models that incorporate linear adaptation [60] by altering

the evolution of expanding/contracting (O(2)-symmetric) perturbations to bump

profiles. Here, we show inputs stabilize bumps to translating (D1-symmetric) per-

turbations. We focus on the case where the external input I(x) is rotationally sym-

metric, so in polar coordinates, I(r,θ) = I(r,θ + s) for s ∈ [0, 2π ]. Thus, our

stationary bump solution satisfies the stationary equation

U(||x||) =
∫
R2

w(x− y) f (U(y))dy + I(x), (2.36)

and by changing to polar coordinates x = (x1, x2) 7→ (r,θ), we have

U(r) =
∫ 2π

0

∫ ∞
0

w(|r− r′|) f (U(r′))r′dr′dθ′ + I(r). (2.37)

Assuming a Heaviside firing rate function (1.3), the integral in (2.37) collapses to

a compact domain

U(r) =
∫ 2π

0

∫ a

0
w(|r− r′|)r′dr′dθ′ + I(r), (2.38)

where r ≡ a defines the boundary bump as in the input-free case (2.4). We can

evaluate (2.38) explicitly by assuming the weight function formula is a sum of

modified Bessel functions (2.2), finding

U(r) = 2πa
N

∑
j=1

ckI(a, r,αk) + I(r),
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where I(a, r, s) is defined by the formula (2.7). To relate the bump radius a to

the threshold κ of the Heaviside firing rate function (1.3), we apply the condition

U(a) = κ, which can be written

U(a) = 2πa
N

∑
j=1

ck
αk

I1(αka)K0(αka) + I(a) = κ.

One can then solve this nonlinear equation using numerical root finding.

To determine the stability of the input-driven stationary bump solution (2.37),

we study the impact of small smooth pertubations away from the stationary solu-

tion by employing the ansatz u(x, t) = U(x) +εΨ(x, t) where ε� 1. Substituting

this expansion into (1.8), when W ≡ 0, and truncating to linear order yields the

equation (2.10) as in the input-free case. The main difference is that bumps are

defined by (2.37), incorporating the input term I(x). Furthermore, applying sepa-

ration of variables Ψ(x, t) = Ψ(x)eλt and rearranging terms yields the eigenvalue

equation (2.11). However, when U(x) satisfies (2.37), such bumps are no longer

neutrally stable to perturbations that shift their position. It is straightforward to

show this in the case of a Heaviside firing rate function (1.3), in which case eigen-

values associated with the Fourier modes Ψn(θ) = einθ are given by the expres-

sion (2.21), so the eigenvalue λ1 associated with shifts perturbations Ψ1(θ) = eiθ

is given by the formula

λ1 = −1 +
a

|U′(a)|
∫ 2π

0
w(2a sin(θ/2)) cos(θ)dθ, (2.39)

and since U(r) is given by (2.38), then

|U′(a)| = a
∫ 2π

0
w(2a sin(θ/2)) cos(θ)dθ− I′(a).
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Thus, we can rewrite (2.39) as

λ1 =
I′(a)

a
∫ 2π

0 w(2a sin(θ/2)) cos(θ)dθ− I′(a)
< 0,

where the inequality holds when I(r) is a monotone decreasing function, as we

have assumed for the radially symmetric Gaussian (2.34). This indicates the bump

will be linearly stable to perturbations that alter its position, indicative of the

mean-reverting stochastic dynamics that emerge when weak noise is considered

in (1.8). Eigenvalues of all Fourier modes, representing azimuthal perturbations

of the bump (2.38), can be computed numerically from the formula (2.21).

2.2.2 Stochastic bump motion in the presence of weak inputs

Our analysis of the stochastic motion of bumps in the stationary input-driven sys-

tem (1.8) employs a similar approach to our analysis of the input-free (I(x) ≡ 0)

system (1.4). However, the effective equations that emerge are no longer transla-

tionally invariant due to the spatial heterogeneity imposed by the input I(x). Our

analysis assumes that inputs are weak, having the same amplitude as the noise

term [24], so we write I(x) = ε Ĩ(x). In this case, the O(1) terms are identical to

the input-free deterministic system (1.1) with stationary bump solution (2.1). We

can then derive a system of nonlinear stochastic differential equations for the ef-

fective motion of the bump’s position ∆(t) = (∆1(t), ∆2(t)), which we can then

truncate to a multivariate Ornstein-Uhlenbeck (OU) process assuming ∆(t) re-

mains small. This captures the fact that bumps are systematically drawn back to

the location of the peak(s) of the external input as demonstrated in Fig. 2.4 and
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Figure 2.4: Numerical simulation of the stochastic neural field (1.8) on the plane
R2 with Heaviside firing rate (1.3) and Bessel function weight (2.2), subject to
radially symmetric Gaussian input (2.34). Thin lines represents the stochastic tra-
jectory of the bump during the time between the previous and current snapshot.
Dashed circle is a plot of the level set I(x) = κ. (A-E) Snapshots of a simulation
of a bump wandering on the plane, due to noise with spatial correlation function
C(x) = cos(x), at time points t = 0, 100, 200, 300, 400. Input causes the trajec-
tory to stay in the vicinity of the peak of the radially symmetric Gaussian (2.34)
at the origin (x1, x2) = (0, 0). (F) Plot of the trajectory of the bump centroid for
t ∈ [0, 400] demonstrates how its stochastic trajectory behaves as 2D OU pro-
cess. Parameters are ε2 = 0.04, κ = 0.2, A0 = 1, σ = 2, and w is (2.9) with
[c1, c2, c3, c4] = [5/3,−5/3,−1/2, 1/2].

37



2.2. STIMULUS-PINNED BUMPS IN R2

Figure 2.5: Numerical simulation of the stochastic neural field (1.8) on the plane
R2 with Heaviside firing rate (1.3) and Bessel function weight (2.2), subject to
translationally symmetric Gaussian input (2.35). Thin lines represents the stochas-
tic trajectory of the bump during the time between the previous and current snap-
shot. Dashed lines are a plot of the level set I(x) = κ. (A-E) Snapshots of a
simulation of a bump wandering on the plane, due to noise with spatial correla-
tion function C(x) = cos(x), at time points t = 0, 100, 200, 300, 400. Input cause
the trajectory to stay in the vicinity of the peak of the translationally symmetric
Gaussian (2.35) along the line x1 = 0. (F) Plot of the trajectory of the bump cen-
troid for t ∈ [0, 400] demonstrates how its stochastic trajectory behaves as 2D OU
process. Parameters are ε2 = 0.04, κ = 0.2, A0 = 1, σ = 2, and w is (2.9) with
[c1, c2, c3, c4] = [5/3,−5/3,−1/2, 1/2].
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Fig. 2.5.

Employing the ansatz (2.23), assuming the bump’s profile has fluctuations

εΦ(x, t) on fast timescales and stochastically varying position ∆(t) on longer time-

scales, we truncate to linear order in ε and find

dΦ(x, t) = LΦ(x, t) +ε∇U(x) · d∆(t) + dW(x, t) + Ĩ(x +∆(t)), (2.40)

where ∇U(x) = (Ux1(x), Ux2(x))
T and L is the non-self-adjoint linear operator

(2.25) with adjoint L∗ given by (2.26). As before, the nullspace of L∗ is spanned

by the two functionsϕ1(x) = f ′(U(x))Ux1(x) andϕ2(x) = f ′(U(x))Ux2(x). Thus,

we can enforce solvability of theO(ε) equation (2.40) to yield the pair of nonlinear

stochastic differential equations

d∆ j(t) = −εG j(∆(t))dt−εdW j(t), (2.41)

where the restorative dynamics of the input are described by the nonlinear func-

tion

G j(∆) =

∫
R2 f ′(U(x))Ux j(x) Ĩ(x +∆)dx∫

R2 f ′(U(x))U2
x j
(x)dx

, j ∈ {1, 2}, (2.42)

and spatiotemporal noise provides the effective noise perturbations to the bump

position through the white noise terms

W j(t) =

∫
R2 f ′(U(x))Ux j(x)W(x, t)dx∫

R2 f ′(U(x))U2
x j
(x)dx

, j ∈ {1, 2}. (2.43)

Note that 〈dW j(t)〉 = 0 and 〈dW(t)dW(s)〉 = 2D jδ(t− s)dtds with D j given by

(4.3.2). As we demonstrated in our analysis of stimulus-driven bump existence

and stability, ∆̄ = (0, 0) is a stable fixed point of the noise-free system ∆̇ j(t) =
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−εG j(∆(t)); j = 1, 2. Linearizing about this solution yields the multivariate OU

process

d∆ j(t) +εβ j∆ j(t)dt = εdW j(t), (2.44)

where

β j = G′(0) =

∫
R2 f ′(U(x))Ux j(x) Ĩx j(x)dx∫

R2 f ′(U(x))U2
x j
(x)dx

, j ∈ {1, 2}, (2.45)

assuming
∫
R2 f ′(U(x))Ux j(x) Ĩxk(x)dx ≡ 0, when j 6= k, which is the case when

I(x) is even symmetric along the x1 and x2 directions as (2.34) and (2.35) are. In

this case, we can use standard properties of an OU process to compute the mean

〈∆ j(t)〉 = ∆ j(0)e−εβ jt and variance

〈∆ j(t)2〉 = εD j

β j

(
1− e−2εβ jt

)
, (2.46)

so the variance 〈∆ j(t)2〉 will approach a constant εD j/β j as t → ∞ and the mean

converges to the fixed point ∆̄ = (0, 0). Thus, we can describe the stochastic

dynamics of the position ∆(t) approximately using a multivariate OU process

(2.44) or with higher order corrections through the nonlinear SDE (2.41).

2.2.3 Explicit results for the Heaviside firing rate

We can explicitly calculate the variances 〈∆ j(t)2〉 as described by the formula

(2.46) in the case of a Heaviside firing rate function (1.3), Bessel function weight

kernel (2.2), and cosine noise correlations (2.32). Thus, the derivative f ′(U) is

given by (2.19), spatial derivatives Ux j ( j = 1, 2) are given by (2.17), and the diffu-

sion coefficients D j ( j = 1, 2) are defined by the formula (2.33). Again, the impact
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Figure 2.6: Variance of the bump position ∆(t) = (∆1(t), ∆2(t)) evolving ac-
cording to the stochastic model (1.8) with Heaviside firing rate (1.3) and Bessel
function weight (2.2). (A) Long-term variance 〈∆1(t)2〉 saturates according to a
multivariate Ornstein-Uhlenbeck process when input is given by a radially sym-
metric Gaussian (2.34). Results from numerical simulations (dashed line) are well
matched to our theoretical result (2.46). An identical picture exists for 〈∆2(t)2〉,
the variance along the x2 direction. (B) Variance along the x2 direction 〈∆2(t)2〉
climbs linearly and variance 〈∆1(t)2〉 along the x1 direction saturates when input
is given by a translationally symmetric Gaussian (2.35). Parameters are κ = 0.2,
A0 = 1,σ = 2, and w is (2.9) with [c1, c2, c3, c4] = [5/3,−5/3,−1/2, 1/2]. Numer-
ical calculations of variance use 1000 realizations each.

of spatiotemporal noise in bump dynamics is primarily determined by interac-

tions that occur at the bump boundary r ≡ a. Furthermore, in the case of a radially

symmetric input such as the Gaussian (2.34), we can compute the coefficients

β j =

∫
R2 f ′(U(x))Ux j(x) Ĩx j(x)dx∫

R2 f ′(U(x))U2
x j
(x)dx

=
aπ Ĩ′(a)
aπU′(a)

=
Ĩ′(a)

U′(a)
, j = {1, 2}. (2.47)

Therefore, in the long time limit, the variances 〈∆ j(t)2〉 will saturate to

lim
t→∞〈∆ j(t)2〉 = ε2D j

β j
=

4ε2 J1(a)2

I′(a)U′(a)
. (2.48)

We compare our explicit calculation of the variance to results from numerical cal-

culations for the case of a radially symmetric Gaussian (2.34) in Fig. 2.6A.
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In the case of the translationally symmetric Gaussian (2.35), we have Ix2(x) ≡

0, soβ2 ≡ 0. As a result 〈∆2(t)2〉 = ε2D2t, and the variance is only mean reverting

along the x1 direction, as demonstrated by the numerical simulation in Fig. 2.5.

The coefficient describing the systematic dynamics along the x1 direction is

εβ1 =
2aA0

∫ 2π
0 exp

[
−a2 cos2θ/σ2

]
cos2θdθ

πσ2|U′(a)| , (2.49)

which can be computed using quadrature to evaluate the formula (2.46) for j = 1.

We compare these theoretical results with averages across numerical realizations

in Fig. 2.6B. Thus, the variance along the x1-direction saturates, while the variance

along the x2-direction indefinitely climbs linearly.

2.2.4 Statistics of the nonlinear Langevin equation

More accurate approximations of the variances 〈∆2
j 〉 can be obtained by perform-

ing an analysis of the full nonlinear Langevin equation (2.41) for the stochastic

motion of the input-driven bump. In [24], it was recently shown this can be partic-

ularly useful when there are multiple distinct fixed points of the noise free equa-

tions ∆̇ j = −εG j(∆) ( j = 1, 2), as noise can eventually cause a phase-slip so a

linearized approximation is no longer valid. Here, we demonstrate that a deriva-

tion of nonlinear Langevin equations can be extended to spatiotemporal patterns

evolving in two-dimensions. Also, even if the position ∆(t) = (∆1(t), ∆2(t)) does

remain close to a single stable fixed point, the stationary probability density P0(∆)

of (2.41) can be considerably different than that of the truncated OU process (2.44).

Thus, we briefly present the computation of this stationary probability density
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Figure 2.7: Nonlinear dynamics in the input driven neural field (1.8) on the plane
R2 with Heaviside firing rate (1.3) and Bessel function weight (2.2), subject to the
periodic input Ĩ(x) = 0.3(cos x1 + cos x2). (A) Bump position (thin line) sam-
pled from a single realization of the system (1.8) for t ∈ [0, 4000], superimposed
on a plot of the potential V(∆). Over long periods of time, the stochastically-
driven position of bumps tends to dwell primarily in the vicinity of minima of
the potential V(∆) defined by (2.57). However, there are rare events whereby the
bump transitions to a neighboring potential well. Thick lines represent the paths
of least action between attractors at (2mπ , 2nπ), m, n ∈ Z. (B) Re-normalized
stationary probability density P0(x) (so that ||P0(x)||max = 1, otherwise P0(x)
would be infinitesimally small everywhere) has peaks at the minima of the po-
tential function V(∆). Parameters are ε2 = 0.025, κ = 0, and weight w is (2.9)
with [c1, c2, c3, c4] = [5/3,−5/3,−1/2, 1/2].

P0(∆) by utilizing the associated Fokker-Planck equation, saving a more exten-

sive study for future work.

The stochastic dynamics is shaped by an underlying potential function V(∆),

which is the solution to the pair of equations

dV
d∆1

= εG1(∆),
dV
d∆2

= εG2(∆), (2.50)

so that the attractors of the noise free system are the minima of V(∆). While (2.50)
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cannot always be solved explicitly, we will present an example below where they

can, for illustration. To analyze the system, we reformulate (2.41) as an equivalent

Fokker-Planck equation [67]

∂P(∆, t)
∂t

=
2

∑
j=1

{
∂

∂∆ j

[
εG j(∆)P(∆, t)

]
+ε2D j

∂2P(∆, t)
∂∆2

j

}
, (2.51)

where P(∆, t) is the probability of finding the bump at position ∆ = (∆1, ∆2) at

time t. Assuming there is a single stable attractor defined by the potential V(∆),

in the long time limit

lim
t→∞ P(∆, t) = P0(∆) = χ exp

[
−V(∆)

ε2D

]
, (2.52)

in the case of rotationally symmetric noise D1 = D2 = D, where χ is a nor-

malization factor such that
∫
R2 P0(∆)d∆ = 1. The long time variance 〈||∆||2〉 =

〈∆2
1〉+ 〈∆2

2〉 is thus given by the integral

〈∆2
1〉+ 〈∆2

2〉 =
∫
R2
(∆2

1 + ∆2
2)P0(∆)d∆. (2.53)

To demonstrate our analysis on a specific example, we focus on an input which

allows explicit computation of the steady state distribution. Thus, we take the

external input Ĩ(x) = A0(cos x1 + cos x2) and assume we then wish to compute

the statistics of the stationary probability density P0(∆). Furthermore, we take

the Heaviside firing rate function (1.3), then the integrals (2.42) can be simplified

by making the substitutions x1 = r cosθ and x2 = r sinθ and integrating out the

radial coordinate r, so

G1(∆) =
U′(a)

∫ 2π
0 cos(θ) Ĩ(a +∆)dθ

U′(a)2
∫ 2π

0 cos2θdθ
=

1
U′(a)π

∫ 2π

0
cos(θ) Ĩ(a +∆)dθ (2.54)

G2(∆) =
U′(a)

∫ 2π
0 sin(θ) Ĩ(a +∆)dθ

U′(a)2
∫ 2π

0 sin2θdθ
=

1
U′(a)π

∫ 2π

0
sinθ Ĩ(a +∆)dθ, (2.55)
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where a = (a,θ). Selecting the doubly periodic function for our external input

Ĩ(x) = A0(cos x1 + cos x2), we generate terms similar to those that arose in our

explicit calculation of the diffusion coefficient D j (2.33). Subsequently, we find we

can evaluate these explicitly, to arrive at the compact expression

G j(∆) = −2A0 J1(a)
U′(a)

sin(∆ j), { j = 1, 2}. (2.56)

Thus, the positions ∆1 and ∆2 evolve independently in nonlinear system (2.41), in

the case of this specific input function. Thus, it is straightforward to evaluate the

potential function as the solution to (2.50), finding

V(∆) = −2εA0 J1(a)
|U′(a)| [cos(∆1) + cos(∆2)] , (2.57)

which can then be utilized to compute the statistics of the stationary probabil-

ity density (2.52). We demonstrate that stochastic trajectories of the bump tend

to dwell mostly in the minima of the potential function defined by (2.57) in Fig.

4.7A. Such durations are interrupted by abrupt transitions of the bump between

neighboring wells as in the one-dimensional case [90]. An example of the rescaled

stationary probability density is given in Fig. 4.7B. We save a more thorough anal-

ysis of these results for subsequent work.

2.3 Conclusion

We have analyzed the impact of additive noise on the stochastic motion of bumps

in planar neural field equations. In networks with no spatial heterogeneity, noise

causes bumps to wander according to two-dimensional Brownian motion. The
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diffusion coefficient associated with this motion can be approximated using an

asymptotic expansion that treats the impact of noise perturbatively. Assuming

the bump retains its profile, to first order, we can derive an effective diffusion

equation for the bump’s position as a function of time. Notably, the dynamics of

the bumps can be separated into diffusion along the canonical directions (x1, x2)

in R2. In the presence of spatially heterogeneous external inputs, the stochas-

tic bumps no longer obey dynamics well described by pure diffusion. Rather,

bumps are attracted to the local maxima of the input functions, so their motion

can be approximated by multivariate Ornstein-Uhlenbeck processes. In particu-

lar, we find that the geometry of the external inputs define the manifold to which

bumps are attracted. Radially symmetric inputs attract bumps to a single point

and translationally symmetric peaked inputs attract bumps to a one-dimensional

line through R2.

In Chapter 3, we aim to extend this work by introducing a mechanism to re-

duce error as a result of noise or heterogeneity. Since weak inputs can help guide

the location of bumps, it is possible other networks in the brain are responsible for

reducing diffusion caused by noise. Notably, this has applications in short term

memory relating to spatial navigation. Thus, we also include a velocity input,

which causes the bump to propagate around the domain. To simplify our anal-

ysis, we restrict our modified model to a one-dimensional domain on a periodic

domain (x ∈ [−π , π ]), with the expectation that our results could be extended to

two-dimensional systems left as future work. We find our modified model per-

forms adequately under a robust set of parameters.
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Chapter 3
Incorporating Sensory Feedback

3.1 Sensory control in velocity-integrating place cell

networks

In this chapter, we employ a neural field model of velocity integration that sus-

tains a bump attractor of neural activity in the absence of any inputs. Amari pi-

oneered the scalar neural field model as a reduction of the excitatory-inhibitory

model of [159], but the incorporation of velocity inputs that shift the bump around

the spatial domain is more recent. Originally developed as a model of the head

direction system [168], velocity-integrating networks introduce an external input

that alters the shape of the recurrent architecture [108]. As a result, a moving

bump, rather than a stationary bump, becomes the stable solution to the model

equations. This model has since been extended to account for place fields and

grid cell fields in planar systems [30, 127]. The fully general form of our neural
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Velocity input
v(t)

Sensory cues
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position 
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Figure 3.1: Mammalian spatial navigation network with sensory feedback. The
animal utilizes its own velocity to update its remembered position (path inte-
gration) and corrects this memory with sensory cues that serve as position land-
marks. (A) Schematic of the underlying neuronal network demonstrates the place
cell network receives direction input from the animal’s velocity signal v(t). Its
position estimate is compared with the true position read-out from a sensory cue,
and this error is then used to generate a control input signal vc(t) back into the
place cell network. (B) Illustration of the experiments by [12], showing an an-
nular track with various objects placed in the environment to provide the animal
with sensory cues.

field model is given

du(x, t) = −
[

u(x, t) +
∫ π

−π
w(x, y) f (u(y, t))dy

+ ṽ(t)
∫ π

−π
wv(x− y) f (u(y, t))dy

]
dt +εdW(x, t), (3.1)

where u(x, t) denotes the total synaptic activity at a position x ∈ [−π , π ] at time

t. The variable x labels the position of neurons in the network as well as a corre-

sponding location in the environment, so the domain Ω = [−π , π ] is taken to be

periodic as it represents an annular track (Fig. 3.1B).
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The function w(x, y) represents the synaptic connectivity between neurons,

which we model as a translationally symmetric unimodal function w0, modified

by spatial heterogeneity wu with strength σ or odd asymmetryφ, so

w(x, y) := (1 +σwu(y))w0(x− y−φ) (3.2)

with weak heterogeneity and asymmetry σ , φ � 1. Note that in the limit σ → 0

and φ → 0, we obtain w(x, y) = w0(x− y), a distance-dependent even function.

However, in the fully general case (σ > 0 and/or φ > 0), it is straightforward

to see that the function w(x, y) need not be distance-dependent or even symmet-

ric. In particular, when σ > 0, discrete attractors form in the network Eq. (4.1)

whereby bumps tend to drift away from their initial position to a finite number

of linearly stable locations [82, 90, 168]. We consider this to be a major source of

error in the network, since near-perfect integration of the velocity inputs could be

achieved if w(x, y) = w0(x− y). For ease of analysis, the translationally symmet-

ric function is typically taken to be a cosine w0(x) := cos x. We will allow wu to

be more general, by representing it as a series of N Fourier modes

wu(x) :=
N

∑
n=1

αn cos(nx) +βn sin(nx); 〈αn〉 = 〈βn〉 = 0; 〈α2
n〉 = 〈β2

n〉 = σ2
n .

(3.3)

The coefficients αn,βn are random variables drawn from the normal distribution

with mean zero and variance σ2
n .

Velocity inputs are derived from a double ring model (Appendix A), which is

represented by the shifting function wv(x− y) := −w′0(x− y) as in the original

head direction system model [168] and recent grid cell models [30]. In the absence
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Figure 3.2: Velocity-integration with moving bump attractors in the neural field
model Eq. (4.1) with a Heaviside firing rate function Eq. (1.3) with thresholdθ = 0
and a cosine base weight function w0(x) = cos(x). (A) Bump of neural activity
u(x, t) perfectly integrates velocity inputs in the case of no heterogeneity (σ = 0)
and no noise (ε = 0), showing the animal’s true position (solid line) is perfectly
tracked by the center of mass of the bump (dashed). (B) In a heterogeneous net-
work (σ = 0.1 with wu = sin(x)), the bump initially moves too fast due to a
discrete attractor of the input-free system at x = π/2, so the bump’s center of
mass is mismatched with the true position of the animal. (C) In the presence of
spatiotemporal noise (ε = 0.2 with cosine correlations C(x) = cos(x)), the bump
wanders diffusively so the encoded position tends to slowly distance itself from
the true position. Here the external velocity input is constant ṽ(t) = 0.1.

of any heterogeneity or asymmetry, the sum w(x, y) + ṽ(t) · wv(x− y) would be

translation symmetric but not even-symmetric, in general. This asymmetry pro-

duces a moving bump as the solution to Eq. (4.1) that will move at a speed given

by |ṽ(t)| (Fig 3.2A). Incorporating heterogeneity, σ > 0, the system is no longer

translation symmetric, and a moving bump will not move at the same speed as the

velocity input |ṽ(t)| (Fig. 3.2B). Thus, assuming a sensory mechanism for correct-

ing the place cell’s encoded position when a cue is encountered, take the velocity

input to be

ṽ(t) := v(t) + vc(t),

the sum of the animal’s true velocity v(t) and an external control signal vc(t).

This is meant to account for the improved place representation observed when
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animals can employ information about sensory landmarks [2, 12, 145]. As shown

in the schematic in Fig. 3.1A, we assume there is a network that can access the

place cell network’s perceived position ∆(t) via a readout of the center of mass of

neural activity [51]

∆(t) =
∫ π

−π
x f (u(x, t))dx. (3.4)

We note that for mass near the boundary, we take caution in calculation due to

the periodic boundary conditions. For a symmetric bump, the center of mass

can be calculated easily as the peak of the bump. The present positional error is

then computed by comparing the perceived position ∆(t) to the animal’s actual

position given by a time integral of the velocity input

∆T(t) =
∫ t

0
v(s)ds,

so the error

r(t) = ∆T(t)− ∆(t), (3.5)

which will be positive (negative) if the estimated position is to the left (right) of

the true position. Note, we extend the domain x ∈ [−π , π ] to compute Eq. (3.5) in

cases where the closest distance between ∆T and ∆ is across the boundary cuts at

x = ±π . The error r(t) is then translated either into a continuous velocity control

signal

vc(t) = λr(t) = λ · (∆T(t)− ∆(t)), (3.6)

or a discrete control signal given by

dvc

dt
= −vc(t)

τ
+ λ

Nc

∑
k=1

r(tk)δ(t− tk), (3.7)
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where sensory cues occur at times tk and λ and τ determine the strength and time

decay of control. As we will show, in the case of continuous control Eq. (3.6),

strengthening the sensory feedback λ always leads to a reduction of the error.

This is not the case for discrete control Eq. (3.7), since the previous sensory cue

at tk < t becomes less relevant as t increases toward tk+1. One of the main goals

of this study is to explore how the spacing between subsequent cues tk+1 − tk

determines how strong λ the control signal should be.

The noise term, dW(x, t), will be defined as in (1.5). As an example, consider

F (x) = cos(x) + sin(x). Then, the spatial correlation C can be computed explic-

itly as

∫ π

−π
F (x− x′)F (y− x′)dx′ = π cos(x− y) =: C(x− y).

As we demonstrate, the control introduced to account for the impact of synap-

tic spatial heterogeneity can also be utilized to decrease errors brought about by

spatiotemporal noise (Fig. 3.2C).

We demonstrate the impact of discrete control Eq. (3.7) on the dynamics of neu-

ral fields that imperfectly integrate their velocity inputs, comparing to a perfectly

integrating network for reference (Fig. 3.3A). Integrating Eq. (3.7), we find that the

discrete perturbations to the velocity signal are given by a series of exponentially

decaying impulses

vc(t) = λ
Nc

∑
k=1

r(tk)e
−(t−tk)/τH(t− tk). (3.8)

52



3.1. SENSORY CONTROL IN VELOCITY-INTEGRATING PLACE CELL
NETWORKS

Figure 3.3: Discrete control reduces error in imperfect velocity-integrating net-
works. (A) Activity plot u(x, t) shows perfect velocity-integrating network is un-
affected by discrete control given by Eq. (3.7), since it accumulates no errors. (B)
Spatially heterogeneous network with σ = 0.1 and wu(x) = sin(x) is corrected
by discrete control so that the represented position (dashed line) is much closer to
the true position (solid line) than in the uncorrected case (compare with Fig. 3.2B).
(C) Network perturbed by noise (ε = 0.2 and C(x) = cos(x)) has its represented
position corrected by discrete control (compare with Fig. 3.2C). Discrete control
Eq. (3.8) is given at intervals tk+1 − tk = ∆t = 2 with strength λ = 1 and decay
timescale τ = 1. Other parameters and numerical simulations are as in Fig. 3.2.

Furthermore, in the limit of the timestep tk+1 − tk between subsequent cues tend-

ing to zero and τ → 0, Eq. (3.7) for discrete control approaches Eq. (3.6) for contin-

uous control. Assuming for demonstration that cues are spaced in such a way that

an animal utilizes one every 2 units of time (tk+1 − tk = 2 for all k = 1, ..., Nc − 1),

we demonstrate in a single realization that a network with spatially heteroge-

neous coupling can recover its ability to correctly integrate velocity (Fig. 3.3B).

In a similar way, networks with additive noise can have their velocity integra-

tion corrected by the sensory feedback signal given by discrete control impulses,

Eq. (3.8), as shown in Fig. 3.3C. In the next section, we will analyze the impact

of heterogeneity and noise on the position of the bump in a low-dimensional ap-

proximation of the bump’s center of mass ∆(t).
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3.2 Analysis and low-dimensional reduction of bump

solutions

To understand the impact the sensory feedback signal has on the statistics of bump

position in Eq. (4.1), we derive a low-dimensional approximation of the model

that projects the dynamics down to a single equation describing bump position

∆(t). Our analysis is adapted from recent studies of stochastic neural field equa-

tions, assuming the impact of perturbations to a translationally symmetric neural

field can be separated into slow timescale changes of the position of bumps along

with fast timescale changes to the profile of bumps [24, 25, 90]. Such analysis

must begin by constructing the bump solutions of the unperturbed system. In

our case we take the velocity inputs, heterogeneity, asymmetry, and noise all to be

perturbations to a translationally symmetric system (taking v = σ = φ = ε = 0

in Eq. (4.1)). While it is possible to develop exact analytical results in the case

wherein we break the symmetry of this model, which we show, it is also helpful

to collect the effects of all the possible perturbations to Eq. (4.1) into a single scalar

equation. The resulting analysis then clearly demonstrates the interaction of such

perturbations.
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3.2.1 Stationary bump solutions to the translation symmetric net-

work

We begin by assuming the homogeneous connectivity function w0(x) in Eq. (3.2)

satisfies evenness (w0(x) = w0(−x)) and there is no heterogeneity (σ = 0) or

asymmetry (φ = 0) in w(x, y). In this case, it is possible to show there is a sta-

tionary bump solution u(x, t) = U(x) with U(x) > θ over an excited region

x ∈ [a1, a2] [4, 55] in the absence of velocity inputs (ṽ ≡ 0) in Eq. (4.1). Fur-

thermore, the weight function is translationally symmetric since

w0((x + s)− (y + s)) = w0(x− y + s− s) = w0(x− y), (3.9)

so there will be a continuum of bump locations associated with any single bump

solution to Eq. (4.1). Stationary bumps satisfy the equation

U(x) =
∫ π

−π
w0(x− y) f (U(y))dy. (3.10)

Note that U(x + s) will also be a solution for any s, since

U(x + s) =
∫ π

−π
w0(x− y) f (U(y + s))dy,

and a change of variables y + s 7→ z yields

U(x + s) =
∫ π

−π
w0(x + s− z) f (U(z))dz,

and another change of variables x + s 7→ x′ yields

U(x′) =
∫ π

−π
w0(x′ − z) f (U(z))dz,
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which is precisely Eq. (3.10). Now, taking the high gain limit γ → ∞, we employ

the Heaviside firing rate function Eq. (1.3). Doing so allows us to generate an

equation for the bump width d = a2 − a1 as in [4]. In this case, Eq. (3.10) becomes

U(x) =
∫ a2

a1

w0(x− y)dy.

We then use the threshold crossing conditions U(a1) = U(a2) = θ and evenness

of w0(x) to derive

U(a1) =
∫ a2

a1

w0(a1 − y)dy =
∫ a2−a1

0
w0(−z)dz =

∫ d

0
w0(z)dz =θ

U(a2) =
∫ a2

a1

w0(a2 − y)dy = −
∫ 0

a2−a1

w0(z)dz =
∫ d

0
w0(z)dz =θ.

Note that the evenness of w0(x) allows us to manipulate the above equations so

they are the same equalities. If evenness did not hold, the above pair of equations

would each be different and we would have an overdetermined system for the

bump width d, meaning stationary bumps do not exist. Thus,

W(d) =
∫ d

0
w0(x)dx = θ ⇒ d = W−1(θ).

For example, in the case of a cosine weight w0(x) = cos(x), we have

W(d) =
∫ d

0
cos(x)dx = sin(d) = θ ⇒ d = sin−1θ, π − sin−1θ. (3.11)

As mentioned, the threshold conditions specify the width d of the bump. Transla-

tion symmetry allows the position of the bump to be anywhere x ∈ [−π , π ], which

allows this network to integrate and store velocity inputs as a position memory.

As mentioned in Section 3.1, the position of the bump will be given by its center of
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mass Eq. (3.4), which for unimodal and even symmetric bumps will also be given

by the peak

∆ = argmaxxU(x). (3.12)

For example, in the case of cosine weight functions w0(x) = cos(x), there is an

even symmetric solution such that a1 = −a and a2 = a, so

U(x) =
∫ a

−a
cos(x− y)dy = 2 sin(a) cos(x). (3.13)

Thus, the location of the bump as computed by Eq. (3.12) is ∆ = 0. Similarly, if

we compute the center of mass using Eq. (3.4), we find

∆ =
∫ π

−π
x f (U(x))dx =

∫ a

−a
xdx = 0,

which is consistent.

3.2.2 Perfect velocity integration by traveling bumps

Now we explore the impact of velocity inputs (v(t) 6= 0) on the translationally

symmetric network (w(x, y) = w0(x− y)). For now, we assume constant velocity

inputs, v(t) ≡ v0. Assuming the bump subsequently moves at a constant speed

c, we look for a traveling wave solution u(x, t) = U(ξ) where ξ = x − ct. We

will show that the traveling wave speed c is exactly equal to the velocity input

amplitude v0, under the assumption that wv(x) = −w′0(x) in Eq. (4.1). Plugging

these conditions into Eq. (4.1), we find

−cU′(ξ) + U(ξ) =
∫ π

−π
[w0(ξ − y) + v0wv(ξ − y)] f (U(y))dy.
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Now plugging in our requirement that the velocity portion of the weight function

wv(x) = −w′0(x), we have

−cU′(ξ) + U(ξ) = −v0

∫ π

−π
w′0(ξ − y) f (U(y))dy +

∫ π

−π
w0(ξ − y) f (U(y))dy.

(3.14)

Under the assumption that the function U(ξ) satisfies the equality Eq. (3.10), we

can differentiate this equation to yield

U′(ξ) =
∫ π

−π
w′0(ξ − y) f (U(y))dy. (3.15)

Canceling the Eq. (3.10) portion of Eq. (3.14), we find that

cU′(ξ) = v0

∫ π

−π
w′0(ξ − y) f (U(y))dy. (3.16)

The equality Eq. (3.16) follows from Eq. (3.15) as long as we set c ≡ v0. Another

implication of our analysis is that the shape of the bump U(ξ) will be the same no

matter what c (equivalently v0) is, suggesting there will be no relaxation time if

the external drive v0 were to be changed abruptly. In this way, we can expect the

translation symmetric version of the network Eq. (4.1) to integrate inputs perfectly,

as was originally proposed by [168].

3.2.3 Imperfect integration due to heterogeneity, asymmetry, and

noise

Now that we have explored the dynamics of the perfect velocity-integrating net-

work, we study the impact of introducing heterogeneities (σ), asymmetry (φ), and
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noise (ε) into the network Eq. (4.1). Rather than deriving exact solutions as we did

for the translationally symmetric system, we take a perturbative approach un-

der the assumption that alterations to the symmetric system are weak. Following

perturbation methods originally developed for the study of front propagation in

reaction-diffusion systems [113, 126], we employ a separation of time scales to de-

compose these effects into a slowly evolving displacement ∆(t) of the bump from

its uniformly translating position and perturbations to the bump profile Φ(x, t).

This yields the following decomposition

u(x, t) = U(x− ∆(t)) +εΦ(x− ∆(t), t) +O(ε2), (3.17)

where we assume σ ,φ, ṽ(t) ∼ O(ε). Plugging the ansatz Eq. (3.17) into Eq. (4.1)

and expanding in powers of ε, we find that at O(1), the system has a stationary

bump solution given by Eq. (3.10). At linear order O(ε), we find the following

equation

εdΦ(x, t) =εLΦ(x, t)dt + U′(x)d∆(t) +σ
∫ π

−π
wu(y + ∆(t))w0(x− y) f (U(y))dydt

(3.18)

− (ṽ(t) +φ)
∫ π

−π
w′0(x− y) f (U(y))dydt +εdW(x, t)

where L is a linear functional given by

Lp(x) := −p(x) +
∫ π

−π
w0(x− y) f ′(U(y))p(y)dy

and its adjoint operator

L∗q(x) = −q(x) + f ′(U(x))
∫ π

−π
w0(x− y)q(y)dy.
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To ensure a solution to Eq. (3.18), we require that the inhomogeneous portion of

the equation be orthogonal to the nullspace of the adjoint operator L∗. Indeed,

the nullspace of L∗ is spanned byϕ(x) = f ′(U(x))U′(x), where U(x) is defined

by Eq. (3.10), which we can verify using integration by parts

L∗ϕ(x) = −ϕ(x) + f ′(U(x))
∫ π

−π
w0(x− y)ϕ(y)dy

= f ′(U(x))
(
−U′(x) +

∫ π

−π
w0(x− y) f ′(U(y))U′(y)dy

)
= f ′(U(x))

(
−U′(x) +

∫ π

−π
d

dy
(
w0(x− y)) f (U(y))dy

)
= f ′(U(x))

(
−U′(x) +

d
dx

( ∫ π

−π
w0(x− y) f (U(y))dy

))
= 0.

(3.19)

The last line holds by differentiating the bump existence equation as in Eq. (3.15).

Now, by taking inner products of the null vector ϕ with the O(ε) Eq. (3.18), we

can derive an evolution equation for ∆(t), the position of the bump

−〈ϕ(x), U′(x)〉d∆(t) =σ
〈
ϕ(x),

∫ π

−π
wu(y + ∆(t))w0(x− y) f (U(y))dy

〉
dt (3.20)

− (ṽ(t) +φ)〈ϕ(x), U′(x)〉dt +ε〈ϕ(x), dW(x, t)〉,

where we have applied the Eq. (3.15). We can simplify the Eq. (3.20) further by

isolating d∆(t) to yield the stochastic differential equation

d∆(t) = [F(∆(t)) + v(t) + vc(t) +φ] dt + dW(t), (3.21)

where the impact of synaptic spatial heterogeneities is described by the nonlinear

function

F(∆) = −σ
∫ π
−π f ′(U(x))U′(x)

∫ π
−π wu(y + ∆)w0(x− y) f (U(y))dydx∫ π
−π f ′(U(x))U′(x)2dx

, (3.22)
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and the noise term has been projected to a temporal white noise processW(t) with

mean zero (〈W(t)〉 = 0) and variance 〈W(t)2〉 = Dt with associated diffusion

coefficient

D = ε2
∫ π
−π
∫ π
−π f ′(U(x))U′(x) f ′(U(y))U′(y)C(x− y)dydx[∫ π

−π f ′(U(x))U′(x)2dx
]2 . (3.23)

Setting vc(t) ≡ 0 and v(t) ≡ v0 (constant), the dynamics of the position variable

∆(t) can be equivalently described by a potential function

V(∆) = −
∫

[F(∆) + v0 +φ] d∆ = −
∫

F(∆)d∆− (v0 +φ)∆, (3.24)

so ∆(t) will descend the gradient of V(∆) toward its local minima. Note that in

the case F(∆) ≡ −φ andW(t) ≡ 0, the control term will vanish vc(t) ≡ 0 and the

bump will perfectly integrate the velocity input, ∆(t) =
∫ t

0 v(s)ds. We find that

the low-dimensional approximation is in excellent agreement with simulations of

the full system in this case of perfect integration (Fig. 3.4A).

Ignoring the control for the time being in Eq. (3.21), we can also identify how

different network imperfections contribute to the resultant error in path integra-

tion. To do so, we simply compute the error function r(t) = ∆T(t)−∆(t) as given

in Eq. (3.5). First, note that in a network with asymmetry φ 6= 0 and no hetero-

geneity F(∆) ≡ 0, the long term error accumulates linearly in time

r(t) = ∆T(t)− ∆(t) =
∫ t

0
v(s)ds−

∫ t

0
[v(s) +φ] ds = −φt,

so the animal’s true position ∆T will be behind (in front of) the estimated position

∆ when φ > 0 (φ < 0). We will demonstrate the impact external control via sen-

sory cues has upon this error in Section 3.3. Errors due to arbitrary heterogeneities
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Figure 3.4: The low-dimensional Eq. (3.21) for the bump position ∆(t) provides
an accurate approximation of the bump’s movement in the full neural field model
Eq. (4.1). (A) Perfect integration of the constant velocity input v(t) = 0.05 leads
to a constantly drifting bump (solid line) whose position is well approximated by
the projected variable ∆(t) (dashed line). Inset shows the tilted potential V(∆) re-
sulting from the constant velocity input. Circles provide corresponding locations
between the two plots at t = 10, 20, 30. (B) Spatial heterogeneity wu(x) = sin(x)
with σ = 0.1 causes bumps to drift toward local attractors of the network. Inset
shows potential with a local minimum to which the trajectory is attracted. (C)
Spatial heterogeneity wu(x) = sin(6x) with σ = 0.2 leads to a more rapid oscil-
lation in the trajectory ∆(t). (D) Spatial heterogeneity wu(x) = sin(4x) + cos(8x)
with σ = 0.1 leads to a less regular deviation in the trajectory ∆(t). Heaviside
firing rate function Eq. (1.3) has threshold θ = 0. Numerical simulations are run
using the same parameters as in Fig. 3.2.
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are more difficult to express explicitly. In general, we can express the solution to

Eq. (3.21) implicitly in this case if we assume the velocity is constant v(t) ≡ v0:

G(∆(t)) =
∫ ∆

0

dy
F(y) + v0

= t. (3.25)

If indeed the function G(∆) is invertible, then we can express ∆(t) = G−1(t), so

r(t) = ∆T(t)− ∆(t) = v0t− G−1(t). (3.26)

We will demonstrate some cases where we can perform this calculation explicitly

in Subsection 3.2.4. Note that the main impact of heterogeneities is to establish a fi-

nite number of discrete attractors, in the velocity input-free system, so that bumps

drift toward these locations (Fig. 3.4B). Even in the velocity-driven network, spa-

tial heterogeneities lead to a sinuous trajectory of the bump that is mismatched to

a straight integration of velocity input (Fig. 3.4C,D). Lastly, note that the impact of

noise can be quantified by averaging across realizations of the stochastic process

∆(t) =
∫ t

0
v(s)ds +W(t) = ∆T(t) +W(t).

While the mean position will be the same for the true and encoded positions

(∆T(t)− 〈∆(t)〉 = 0), the variance will grow linearly in time

〈r(t)2〉 = 〈(∆T(t)− ∆(t))2〉 = 〈W(t)2〉 = Dt,

where the diffusion coefficient D can be computed using Eq. (3.23). Previous work

has characterized the impact of the bump profile and spatiotemporal noise corre-

lation structure on the diffusion coefficient D, providing some explicit calculations

[90]. In general, the main effects of noise perturbations on the bump will be ex-

perienced by the bump edges, where the activity variable u(x, t) crosses the firing
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rate threshold θ. We now provide some explicit calculations demonstrating the

impact of spatial heterogeneity on the long term position of the bump.

3.2.4 Explicit results for spatially heterogeneous networks with

a Heaviside firing rate

Several previous studies have characterized the impact of periodic microstruc-

ture on the propagation of waves in neural media [17, 44, 92]. Typically, periodic

heterogeneities can slow down waves and even cause propagation failure. We

extend these previous results here, showing that the low-dimensional Eq. (3.21)

allows us to estimate the location of bifurcations separating detectable and unde-

tectable constant velocity inputs v(t) ≡ v0. Again, we are ignoring the impact of

control at this point, studying its effects in more detail in Section 3.3. To allow

for more general weight heterogeneities, we consider the decomposition given

by Eq. (3.3). Thus, we can integrate each of the Fourier modes independently to

derive the function F(∆) given by Eq. (3.22). Furthermore, we assume a cosine

for the homogeneous weight function w0(x) = cos(x) and a Heaviside firing rate

Eq. (1.3).

To begin, note that the bump solution is given by Eq. (3.13) and the half-width

is a = 1
2

[
π − sin−1θ

]
as given by Eq. (3.11). Therefore, the spatial derivative

U′(x) = −2 sin(a) sin(x). Furthermore, the null vector defined by Eq. (3.19) is

spanned by the difference of delta distributions δ(x + a)− δ(x− a). This means

that the frequency n cosine Fourier components of the heterogeneity, with scaling
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αn, contribute the function F(∆) in the following way

Fαn(∆) =

∫ π
−π (δ(x + a)− δ(x− a))

∫ a
−a cos(n(y + ∆)) cos(x− y)dydx

2 sin a
∫ π
−π (δ(x + a)− δ(x− a)) sin xdx

=
n cos(na)− cot(a) sin(na)

n2 − 1
sin(n∆).

In a similar way, we can compute the coefficients arising from the sine Fourier

components with scaling βn as

Fβn(∆) =

∫ π
−π (δ(x + a)− δ(x− a))

∫ a
−a sin(n(y + ∆)) cos(x− y)dydx

2 sin a
∫ π
−π (δ(x + a)− δ(x− a)) sin xdx

=
cot(a) sin(na)− n cos(na)

n2 − 1
cos(n∆).

Thus, we can write the resultant heterogeneity in general as

F(∆) = σ
N

∑
n=1
Cn [αn sin(n∆)−βn cos(n∆)] , (3.27)

where

Cn =
n cos(na)− cot(a) sin(na)

n2 − 1
, (3.28)

and notice in the special case n = 1, we can take the limit n→ 1 to find

C1 =
sin(a) cos(a)− a

2 sin(a)
. (3.29)

We can explicitly compute the solution to Eq. (3.21) in some special cases of

the heterogeneity F(∆), defined by Eq. (3.27). In particular, we focus on a single

cosine-shaped heterogeneity so that αm = 1, αn = 0 (n 6= m), and βn = 0 (∀n).

Furthermore, we assume a constant input velocity v(t) ≡ v0, so that the scalar

Eq. (3.21) for ∆(t) is given by

∆̇(t) = κ sin(m∆) + v0, (3.30)
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Figure 3.5: Spatial heterogeneity slows and even stops the propagation of velocity-
driven bumps. (A) Bump position ∆(t) demonstrates the variant propagation
velocity occurring when heterogeneity (σ = 0.5) is introduced as opposed to
the homogeneous network (σ = 0). For strong enough heterogeneity (σ = 1),
propagation fails. Theory (solid line) given by Eq. (3.31) is well matched to
simulations (dashed line) of the full model Eq. (4.1). (B) Bump velocity vb de-
creases as a function of heterogeneity strength σ until propagation failure occurs
at σ = (m2 − 1)|v0|/| cot(a) sin(ma)−m cos(ma)|. Firing rate function is Heavi-
side Eq. (1.3), heterogeneity is wu(x) = cos(mx), withθ = 0.5 and m = 4.

where κ = σCn. Now, assuming ∆(0) = 0, the Eq. (3.30) can be integrated to yield

an explicit solution

∆(t) =
2
m

tan−1

χ tan
(

tan−1
[
κ

χ

]
+

mt
2
χ

)
−κ

v0

 , (3.31)

with χ =
√
κ2 − v2

0. There is a partition in (κ, v0) parameter space given by the

equation |κ| = |v0|. When |κ| > |v0|, so the arguments κ2 − v2
0 of the square roots

in Eq. (3.31) are positive, then there is a family of fixed points of the Eq. (3.30), so

that the bump position ∆(t) will eventually become pinned to a single position. In

this case, velocity inputs are not detectable by the network, since they do not result

in the propagation of a bump. Consistent with this, the Eq. (3.31) has a defined

limit at t → ∞, ∆(t) → 2
m tan−1

[√
κ2 − v2

0/v0 −κ/v0

]
. The general formulas for

66



3.2. ANALYSIS AND LOW-DIMENSIONAL REDUCTION OF BUMP
SOLUTIONS

all equilibria of Eq. (3.30) are given by

∆̄k+ =
2kπ
m

+
1
m

sin−1 v0

κ
, k = 0, ..., m− 1, (3.32)

∆̄k− =
(2k + 1)π

m
− 1

m
sin−1 v0

κ
, k = 0, ..., m− 1. (3.33)

On the other hand, when |κ| < |v0|, the heterogeneity F(∆) will not lead to pin-

ning of bumps, so bumps will propagate indefinitely in response to velocity in-

puts. However, the heterogeneity will ultimately reduce the speed of propagation

of bumps, as found in previous studies of periodically heterogeneous neural fields

[17, 44, 92]. We can determine the average reduction in the bump’s speed by cal-

culating the time T at which ∆(t) crosses ∆ = 2π/m, completing one period of

the heterogeneity sin(m∆):

T =
2π

m
√

v2
0 −κ2

, (3.34)

which means that the average speed of the bump vb is given

vb =
2π/m

T
=
√

v2
0 −κ2, (3.35)

similar to the speed scaling formulas found in [17, 44]. This allows us to directly

compute the curve in parameter space at which wave propagation failure occurs,

|v0| = |κ| as stated above. Note that the bump speed Eq. (3.35) depends on the

frequency and amplitude of the heterogeneity through the term

κ = σ
cot(a) sin(ma)−m cos(ma)

m2 − 1
. (3.36)

Thus, we can approximate the average, temporally-evolving error in path integra-

tion for this network as

r(t) = ∆T(t)− ∆(t) ≈
(

v0 −
√

v2
0 −κ2

)
t. (3.37)
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A more precise estimate is obtained by using the formula for ∆(t) given by Eq. (3.31).

We demonstrate the accuracy of this full approximation in Fig. 3.4C,D. The bump

position approximation Eq. (3.31) and average speed approximation computed

from Eq. (3.35) are compared with the full neural field model Eq. (4.1) in Fig. 3.5.

We find the low-dimensional approximation Eq. (3.30) is in excellent agreement

with simulations. In particular, the points in parameter space at which propaga-

tion failure occur are well matched, and the sinuous trajectory of the bump is well

tracked by our low-dimensional theory. This suggests we can gain many insights

concerning the full model by analyzing this simpler Eq. (3.21).

As noted above, the existence of spatial heterogeneities in networks can lead

to pinning or a reduction in the speed of propagating bumps, which should be

accurately tracking velocity-input. However, several previous experiments have

suggested that sensory feedback is incorporated into the neural representation of

spatial navigation [12, 77, 145, 169]. As discussed in Section 3.1, we propose a

simple external control mechanism that incorporates a comparison of an animal’s

current estimate of position with an external sensory cue (Fig. 3.1A). In Section 3.3,

we will demonstrate the improvement in position encoding afforded by sensory

feedback control. Furthermore, we will show that there is an optimal weighting

and timescale of control feedback when sensory cues appear discretely in space

or time.
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3.3 Incorporating sensory cues with online control

Recent experimental studies have shown that the presence of sensory landmarks

reduces the size of mammalian place fields as compared to the case of no land-

marks [2, 12, 169]. Interestingly, such a reduction in place field size can occur

quite quickly, in response to the temporary presence of sensory information, as

show in echolocating bats [145]. Note here, we are referring to sensory informa-

tion beyond the animal’s proprioceptive experience of its own motion. Specif-

ically, we are referring to objects placed along the track of navigation that may

provide visual, auditory, or olfactory feedback (Fig. 3.1B). This suggests an on-

line interaction between the sensory system and the path integration system that

passes some positional information acquired by sensory cues [144]. We suggest

that such mechanisms could counteract errors in position encoding that arise due

to synaptic heterogeneity [26, 75, 82] or noise [31, 40, 99]. However, when cues

occur discretely in space, tuning the strength of feedback introduces a tradeoff be-

tween the immediate benefits of recent cues and the deleterious influence of older

irrelevant cues. We explore this in the low-dimensional model Eq. (3.21) derived

in Section 3.2.

3.3.1 Error due to network asymmetry and heterogeneity

We first examine the case of instantaneous cues and updates, modeled as a contin-

uous update to the position variable ∆(t), as described by Eq. (3.6). This would be
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the case in which landmark cues are continuously apparent to an animal, allow-

ing the sensory system to send a constant stream of information to the position-

encoding network. For the time being, we also ignore the impact of noise, explor-

ing its effect in Subsection 3.3.2. Under these assumptions, the low-dimensional

equation for bump position is

∆̇(t) = F(∆(t)) +φ+ v(t) + λ(∆T(t)− ∆(t)). (3.38)

As a simple example of the impact of the control term in Eq. (3.38), we examine

the case of no heterogeneity F(∆) ≡ 0 and non-zero asymmetry φ > 0. In this

case, we can analytically calculate the long term trajectory of the error r(t) =

∆T(t)−∆(t). To do so, we can write down the first order differential equation for

the error [137]

ṙ(t) + λr(t) = ∆̇T(t)− ∆̇(t) + λ(∆T(t)− ∆(t))

= v(t)−φ− v(t)− λ(∆T(t)− ∆(t)) + λ(∆T(t)− ∆(t))

= −φ. (3.39)

It is straightforward to calculate the solution to the linear differential Eq. (3.39) in

the case r(0) = 0, finding r(t) = −φ(1 − e−λt)/λ so that limt→∞ r(t) = −φ/λ.

Thus, perfect convergence of the trajectory ∆(t) to ∆T(t) can only be obtained in

the limit of infinitely strong control λ → ∞. It is also important to note that as

long as the control strength is positive λ > 0, the error r(t) will be bounded in the

long time limit t→ ∞.

We can extend our analysis of the Eq. (3.38) to the case of arbitrary hetero-

geneities using regular perturbation theory. Writing the linear expansion of ∆(t) =
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∆0(t) +∆1(t)/λ under the assumption λ � 1, we find that the zeroth order equa-

tion for ∆0(t) is simply given by ∆0(t) = ∆T(t). Extending to the first order

equation in 1/λ, we find

∆̇T(t) = F(∆T(t)) +φ+ v(t)− ∆1(t).

Applying the equation ∆̇T(t) = v(t), we thus find that ∆1(t) = F(∆T(t)) +φ,

which means that the long term error can be approximated by

r(t) = F
(∫ t

0
v(s)ds

)
+φ+O(1/λ2)

to first order in 1/λ. Thus, as long as F(∆) is a bounded function, then the error

will remain bounded, reaching a maximum amplitude of maxx|F(x) +φ| [137].

Thus far, we have considered the case of a continuous flow of sensory informa-

tion providing an accurate estimate of an animal’s position in space. However, in

more realistic scenarios, animals receive external sensory information discretely

in time via local landmarks [12, 144] or echolocation [145]. Sensory cues that pro-

vide a landmark for an animal’s present position may be captured periodically

in time or more randomly; we account for both forms of sensory cue acquisition.

As discussed in our formulation of the model in Section 3.1, we assume the influ-

ence of sensory cues weakens as time elapses from the time at which they were

received. This is consistent with recent observations concerning the evolution of

place fields in bats as a function of the time since the last echo signal [145]. Thus
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we consider the following model combing path integration with sensory cues ac-

quired at times tk:

∆̇(t) = F(∆(t)) +φ+ v(t) + vc(t), (3.40)

v̇c(t) = −vc(t)/τ + λ
Nc

∑
k=1

r(tk)δ(t− tk), (3.41)

r(tk) = ∆T(tk)− ∆(tk).

Analogous to the continuous control case, the error term rk computes the instan-

taneous difference between the true position ∆T(t) and the encoded position ∆(t)

at time tk. This is then incorporated into the discretely incremented control term

vc(t) with strength λ, and the temporal decay of cue influence is determined by

the timescale τ . We will demonstrate that for any given τ , there is an optimal

strength of feedback that trades off the error reduction of recent cues (tk) with the

error increase potentially arising for older cues (t1, ..., tk−1). Assuming vc(0) = 0

and treating the pointwise values of r(t) as constant, we can integrate Eq. (3.41) to

yield the piecewise smooth function

vc(t) = λ
Nc

∑
k=1

r(tk)e−(t−tk)/τH(t− tk),

as we did in Section 3.1 for the full neural field model in Eq. (3.8). Thus, adjust-

ments in velocity are discretely incremented and then decay over time. Also, note

in the limit τ → 0 and tk+1 − tk → 0, we obtain the continuous control function

vc(t) = λr(t). This can be seen by performing this limit on Eq. (3.41) and then

integrating.

To demonstrate the impact of discrete control in more detail, we begin by

studying the case of a network subject only to asymmetry (F(∆) ≡ 0 and φ > 0).
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Furthermore, we focus on the case of constant velocity input v(t) ≡ v0, so we can

write the discretely controlled position Eq. (3.40) as

∆̇(t) = φ+ v0 + λ
Nc

∑
k=1

[v0tk − ∆(tk)] e−(t−tk)/τH(t− tk). (3.42)

We can solve the piecewise smooth differential Eq. (3.42) recursively, integrating

with a new initial condition ∆(tk) at each cue time tk. In the initial time domain

[0, t1), ∆(0) = 0 and ∆̇(t) = v0 +φ, so ∆(t) = (v0 +φ)t and ∆(t1) = (v0 +φ)t1.

On the subsequent time domain [t1, t2), we have

∆̇(t) = v0 +φ+ r(t1)e−(t−t1)/τ ,

so

∆(t) = (v0 +φ)t + λτr(t1)
[
1− e−(t−t1)/τ

]
.

In a similar way, we can solve for ∆(t) on [t2, t3) to find

∆(t) = (v0 +φ)t + λτ
2

∑
k=1

r(tk)
[
1− e−(t−tk)/τ

]
,

and in general, we can express

∆(t) = (v0 +φ)t + λτ
Nc

∑
k=1

r(tk)
[
1− e−(t−tk)/τ

]
H(t− tk).

Thus, we can express the error as a function of time

r(t) = −φt− λτ
Nc

∑
k=1

r(tk)
[
1− e−(t−tk)/τ

]
H(t− tk). (3.43)

Expressing rk := r(tk) and focusing on the error at the cue timepoints tk, we can

write Eq. (3.43) as

rl = −φt− λτ
l−1

∑
k=1

rk

[
1− e−(tl−tk)/τ

]
.
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Furthermore, in the case of periodically spaced cues, we can write tk+1 − tk =

(∆t), ∀k, so that

rl = −φ · l · ∆t− λτ
l−1

∑
k=1

rk

[
1− e−(l−k)∆t/τ

]
. (3.44)

Assuming that λ is not too large, the discrete Eq. (3.44) will have a fixed point

in the long time limit rl → r∗, which we can compute by taking the difference

between rl+1 and rl and approximating rk ≈ r∗:

rl = r∗ = −φ · l · ∆t− λτr∗
l−1

∑
k=1

[
1− e−(l−k)∆t/τ

]
,

rl+1 = r∗ = −φ · (l + 1) · ∆t− λτr∗
l

∑
k=1

[
1− e−(l+1−k)∆t/τ

]
,

and we can make the approximation e−l∆t/τ → 0, so that rl − rl+1 yields

0 = φ · ∆t + λτr∗ ⇒ r∗ = −φ · ∆t/(λτ). (3.45)

We demonstrate the accuracy of the formula in Fig. 3.6A,B, showing that the error

remains bounded due to the periodic perturbations of the discrete control term.

Of course, the fixed point value given by Eq. (3.45) is contingent on its existence

and stability. In cases where either condition is violated, the error rl will diverge in

the long time limit (Fig. 3.6C). Essentially, negative feedback overcorrects for the

previously observed errors at each cue time, leading to unstable oscillations in the

error. Analytically identifying the cases in which rl diverges would require a more

thorough study of the discrete Eq. (3.44). Numerical simulations suggest there is

a boundary value of λ above which these unstable oscillations occur. Thus, the

maximal value λ for which the fixed point r∗ exists and is stable would correspond

to the optimal control strength, all other parameters being fixed.
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Figure 3.6: Path integration error in a network with asymmetryφ = 0.1, discretely
controlled according to Eq. (3.41). (A) Error resulting from asymmetry plus dis-
crete control with time decay τ = 1 quickly reaches the fixed point r∗ (thin lines)
given by Eq. (3.45). Notice as the strength of control λ is increased, the amplitude
|r(t)| of long term error decreases. Low-dimensional approximations (solid lines)
given by Eq. (3.42) are in excellent agreement with simulations (dashed lines) of
the full model Eq. (4.1). (B) Increasing the control decay timescale τ = 2 leads to
longer lasting oscillations in the error. (C) Making the control too strong, λ = 4.5,
leads to instability in the error. Negative feedback produces oscillations that grow
in amplitude. Time spacing between cues is ∆t = 1. Other parameters θ = 0.5,
v0 = 0.1. Numerical simulations utilize the same parameters as in Fig. 3.2.

We now study the case of heterogeneities and explore the impact of sensory

cues on the long term error. Note, in the case of no asymmetry and constant

velocity input v(t) = v0, the low-dimensional equation for bump position takes

the form

∆̇(t) = F(∆(t)) + v0 + λ
Nc

∑
k=1

[v0tk − ∆(tk)] e−(t−tk)/τH(t− tk). (3.46)

While we cannot solve Eq. (3.46) explicitly for general heterogeneities F(∆), we

can numerically analyze the impact of both the control strength λ and the control

decay timescale τ on the long term error r(t) = ∆T(t) − ∆(t). Specifically, we

associate error with a scalar quantity by computing the log of the L2-norm

R := ln ||∆T(t)− ∆(t)||2 = ln

√∫ t f

0
|∆T(t)− ∆(t)|2dt

 , (3.47)
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where t f is time at which the path ends. We compare the effects of varying

the spacings tk+1 − tk between subsequent cues, testing both time-periodic cues

(tk+1 − tk = ∆t, ∀k) and exponentially distributed spacings (p(∆t) = µe−µ∆t).

Furthermore, we randomize the heterogeneity according to the formula Eq. (3.3)

with variance σ2
n = 1 with four total modes (N = 2). To average error across

many realizations, we simulate the controlled version Eq. (3.46) for many differ-

ent randomly generated heterogeneities, compute an L2-norm of error R j for the

jth realization and averaged 〈R〉 = 1
Nr

∑
Nr
j=1 R j for Nr realizations.

We are mainly interested in the (λ, τ) values that minimize the average log

error 〈R〉. Our findings are summarized in Fig. 3.7. First, we note that there is al-

ways a curve through (λ, τ) space determining the values of the control term that

minimize the average error 〈R〉. In all plots, the associated τ value decreases with

λ and vice versa. In general, we find this relationship to be roughly inversely pro-

portional λ ∝ 1/τ . This means that stronger control should decay more quickly,

and equivalently weaker control can last longer. Furthermore, by comparing plots

for periodic cues with ∆t = 4 (Fig. 3.7A) versus ∆t = 2 (Fig. 3.7B), we find longer

decay timescales associated with each λ value in the case ∆t = 2. Such a trend

may arise due to the fact that more frequent updates in sensory information via

cues prevents overcorrection that could occur in the case of less frequent cues.

A similar trend arises in the case of exponentially distributed time spacings be-

tween cues (µ = 0.5 in Fig. 3.7C versus µ = 1 in Fig. 3.7D). When cues are more

frequent, the optimal timescale of decay τ is slightly larger for each value of λ.

In addition, we have studied the average error as a function of time for both
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Figure 3.7: Average log error 〈R〉 computed across realizations of Eq. (3.47) for
the discretely controlled low-dimensional approximation Eq. (3.46) with spatial
heterogeneity resulting from Eq. (3.3) with N = 2 and coefficient varianceσ2

n = 1.
(A) For periodically appearing control cues with ∆t = 4, we find there is an in-
termediate curve (solid) of (λ, τ) values that minimizes 〈R〉. In particular, as the
control decay timescale τ is increased, the optimal value of λ decreases. (B) The
same trend is consistent for periodic cues with spacing ∆t = 2, but the curve of
optimal (λ, τ) values shifts so there are higher values of τ associated with each
value of λ as compared with A. (C,D) When spacings between cue times are ex-
ponentially distributed p(∆t) = µe−µ∆t with µ = 0.5 in C and µ = 1 in D, we
find the optimal curve shifts to shorter values of τ for more frequent cues. Other
parameters v0 = 0.15, θ = 0, σ = 0.1, and simulation time t f = 40. Numerical
simulations are performed using Euler’s method with a timestep of 0.05, and each
grid point used 1000 realizations.
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Figure 3.8: Average error 〈|r(t)|〉 as a function of time in a heterogeneous network
(wu(x) = α1 cos(x)) with control. Velocity-input is constant v(t) = v0 = 0.05.
(A) Numerical simulations (dashed lines) of the neural field Eq. (4.1) are well
matched by the low-dimensional approximation (solid lines) given by Eq. (3.46).
As demonstrated, continuous control provides the best reduction in error, but dis-
crete control with ∆t = 4 still provides an appreciable reduction. (B) Plot demon-
strates the impact of varying the control strength λ and the control decay timescale
τ . Other parameters are θ = 0.2 and σ = 0.1.

continuously and discretely controlled networks with heterogeneities. Note that

we randomize the heterogeneity wu(x) = α1 cos(x) so that α1 is normally dis-

tributed with variance unity. To compute the average error, we take the mean of

the absolute value 〈|r(t)|〉 as shown in Fig. 3.8. In the case of strong continu-

ous control, it is possible to substantially decrease the impact of heterogeneities

as compared with the uncontrolled case (Fig. 3.8A). Discrete control maintains

an intermediate level of error, since there is not a constant stream of information

provided to reduce error. Varying the strength λ and timescale τ of control alters

the long term variance in the error (Fig. 3.8B). As suggested by Fig. 3.7, strong

and fast decaying control tends to lead to substantial reductions in error.
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3.3.2 Error due to dynamic fluctuations

We now examine the impact of sensory feedback on networks subject to temporal

noise fluctuations. Dynamic variability in networks can arise from ion channel

fluctuations [37], synaptic variability [123], or finite size effects [18]. As demon-

strated in our analysis in Section 3.2, we can reduce the equation for the position

of a noise- and velocity-driven bump to a single stochastic differential Eq. (3.21).

Focusing specifically on the impact of noise, taking constant speed v(t) ≡ v0, and

ignoring heterogeneities, we find that the controlled equation for the bump posi-

tion takes the form

d∆(t) = [v0 + vc(t)] dt + dW(t). (3.48)

We begin by examining the case of continuous sensory feedback, so that Eq. (3.48)

becomes

d∆(t) = [v0 + λv0t− λ∆(t)] dt + dW(t). (3.49)

Note that Eq. (3.49) is a non-autonomous Ornstein-Uhlenbeck process, and we

can use integrating factors to identify an explicit solution. Utilizing the change of

variables h(∆, t) = ∆eλt and differentiating with respect to t, we find

dh(∆, t) = d∆eλt + λ∆eλt = eλt [v0 + λv0t− λ∆+ λ∆] dt + eλtdW

= eλt [v0 + λv0t] dt + eλtdW = d
(

v0teλt
)
+ eλtdW . (3.50)

Assuming ∆(0) = 0, we can integrate Eq. (3.50) and multiply through by e−λt to

yield the solution

∆(t) = v0t + e−λt
∫ t

0
eλsdW(s),
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whose mean is 〈∆(t)〉 = v0t and variance is given

〈∆(t)2〉 − 〈∆(t)〉2 =

√
D

2λ

[
1− e−2λt

]
,

where the diffusion coefficient D can be calculated from the neural field model

parameters as in Eq. (3.23). The long term variance is thus given by lim
t→∞〈∆(t)2〉 −

〈∆(t)〉2 =

√
D

2λ
. Note that in the limit λ → ∞, the variance goes to zero 〈∆(t)2〉 −

〈∆(t)〉2 → 0, suggesting that strengthening continuous control will always reduce

the average error further. Continuous control substantially reduces the long term

variance in the bump position ∆(t) as well as the error

r(t) = ∆T(t)− ∆(t) = −e−λt
∫ t

0
eλsdW(s).

Note that 〈r(t)〉 = 0 and 〈r(t)2〉 =
√

D
2λ

[
1− e−2λt]. We compare the continuously

controlled system to the control-free system in Fig. 3.9A, revealing the long term

saturation in the position variance.

We also study the effect of discrete control on the variance in position, using

the low-dimensional approximation of bump position

d∆(t) = [v(t) + vc(t)] dt + dW(t), (3.51)

v̇c(t) = −
vc

τ
+ λ

Nc

∑
k=1

r(tk)δ(t− tk).

Again, this is under the assumption that cues are spaced discretely in time or

space, and they provide sensory input for a brief period of time. As in Subsection

3.3.1, we can solve Eq. (3.51) iteratively. To begin, note that when t ∈ [0, t1), ∆(t)

has yet to be affected by the feedback control term in Eq. (3.51), so ∆(t) = v0t +
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W(t). Subsequently, we can integrate Eq. (3.51) to find the stochastic formula for

∆(t) after the first cue at t1:

∆(t) = v0t + λτ(v0t1 − ∆(t1))
[
1− e−(t−t1)/τ

]
+W(t), t ∈ [t1, t2).

Each realization will typically produce a different value for ∆(t1) = v0t1 +W(t1).

Note that 〈∆(t)〉 = v0t, so the impact of noise and control can be observed by

calculating the variance [67]

〈∆(t)2〉 − 〈∆(t)〉2 = Dt + λτDt1

(
1− e−(t−t1)/τ

) (
λτ
(

1− e−(t−t1)/τ
)
− 2
)

.

(3.52)

One insight to be gained from the formula Eq. (3.52) is that infinitely strong and

fast decaying control, even when it is discrete, will minimize the variance in the

position. Specifically, if we take λ = λ0/τ , then we can write

〈∆(t)2〉 − 〈∆(t)〉2 =Dt + λ0Dt1

(
1− e−λ(t−t1)/λ0

) (
λ0

(
1− e−λ(t−t1)/λ0

)
− 2
)

.

Taking the limit as λ → ∞, we find that

lim
λ→∞

[
〈∆(t)2〉 − 〈∆(t)〉2

]
=Dt + λ0Dt1(λ0 − 2),

which is minimized when the scaling term λ0 = 1, yielding 〈∆(t)2〉 − 〈∆(t)〉2 =

D(t− t1).

We can solve Eq. (3.51) explicitly for an arbitrary number of cue times, yielding

∆(t) = v0t + λτ
Nc

∑
k=1

r(tk)
[
1− e−(t−tk)/τ

]
H(t− tk) +W(t). (3.53)

While it is clear that the mean 〈∆(t)〉 = v0t, it is more complicated to compute

the variance 〈∆(t)2〉 − 〈∆(t)〉2 in general. This is chiefly due to the fact that r(tk)
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Figure 3.9: Variance 〈∆(t)2〉 − 〈∆(t)〉2 computed for the noise-driven network
with control. Velocity-input is constant v(t) = v0 = 0. (A) Numerical simula-
tions (dashed lines) of the neural field model Eq. (4.1) are well matched to low-
dimensional approximation (solid lines) given by Eq. (3.48). Continuous control
substantially reduces the variance, but discrete control with ∆t = 4 also provide a
variance reduction. Notably, the variance saturates in the case of discrete control
as well. (B) Similar to the case of quenched variability through heterogeneity in
Fig. 3.8, varying the strength and timescale of control alters the long term vari-
ance. Other parameters are θ = 0.2 and ε = 0.1.

will depend on (r(t1), ..., r(tk−1)), and this long-lasting history-dependence will

accumulate indefinitely. To gain some analytical understanding, we make the as-

sumption of brief control impulses, so that τ � 1 and e−(tk+1−tk)/τ � 1, ∀k. In

this case, we can write the equation for the update of the error term rk := r(tk) as

rk+1 ≈ (1− λτ)rk +W(tk+1)−W(tk),

where r1 = W(t1). Again, it should be clear there is an inverse relationship be-

tween the impact of λ and τ on the long term error in this limiting case. We

compute the variance numerically from Eq. (3.53) for the case of discrete control

in Fig. 3.9, demonstrating an excellent match with the neural field model Eq. (4.1).

We conclude by computing the average log error Eq. (3.47) across realizations
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Figure 3.10: Average log error 〈R〉 computed across realizations of Eq. (3.47) for
the discretely controlled low-dimensional approximation Eq. (3.53) driven by ad-
ditive noise with amplitude ε = 0.1 as described in Eq. (4.1). (A) For periodic cues
with spacing ∆t = 4, we find that the curve (solid line) of optimal (λ, τ) values
has τ decreasing with λ as in Fig. 3.7. (B) A similar tend is observed for exponen-
tially distributed p(∆t) = µe−µ∆t spacings between cue times with µ = 0.5. Other
parameters v0 = 0.15, θ = 0, and simulation time t f = 40. Numerical simulations
are performed using the same method as in Fig. 3.7.

of Eq. (3.51) in Fig. 3.10. Notice again that the optimal value of τ , which minimizes

〈R〉 is inversely related to the strength of control. Furthermore, this trend is pre-

served whether cues appear periodically in time (Fig. 3.10A) or at exponentially

distributed intervals (Fig. 3.10B).

3.4 Conclusion

We have introduced and studied a neural field model of velocity integration that

incorporates sensory feedback. Velocity input results in the propagation of a
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bump attractor whose position encodes an animal’s estimate of its position. Sen-

sory information is assumed to come in the form of cues that are either constantly

present, in the case of continuous feedback, or present at discrete points in time,

in the case of discrete feedback. Our analysis has focused on one-dimensional

periodic systems, wherein it is assumed the animal is navigating along a narrow

annular track (Fig. 3.1B). This was based on the protocol used in the experiments

of [12], which were used to study the effect of local cues on the sharpness of neu-

ronal place fields. We find there is an optimal control strength λ that minimizes

the long term error in the model’s position estimate. This pattern holds when

errors originate from spatial heterogeneities as well as dynamic fluctuations.

In Chapter 4, we introduce another method that a large scale network may

employ to reduce errors. In homogeneous networks, excitatory coupling between

layers can reduce diffusion [86]. We extend this idea to include the impacts of

heterogeneity. In fact, we suggest heterogeneity could act as a method of storing

spatial landmarks. Indeed, through a drift-diffusion approximation, we are able

to derive the effective velocity and diffusion of bumps through a multilayer het-

erogeneous network. Heterogeneity tends to reduce diffusion, but also impacts

the speed of the traveling bump. Thus, there is a cost to storing spatial landmarks.

However, this trade-off positively impacts stationary bumps, as these landmark

storage locations will pin the bump in place.
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Chapter 4
Extensions to Multiple Bump Layers

4.1 Multilayer neural field with spatial heterogeneity

Neural field models of persistent activity have been used extensively to under-

stand the relationships between network properties and spatiotemporal activity

dynamics [19, 43]. Stable bump attractors arise as solutions to these models when

network connectivity is locally excitatory and broadly inhibitory, and these so-

lutions are translationally invariant when connectivity is also strictly distance-

dependent [4, 55]. However, the incorporation of multiple neural field layers and

spatial heterogeneity can break the translation invariance of single network lay-

ers, so that bumps have preferred positions within their respective layer [62, 63,

90, 91]. Our analysis focuses on a multilayer neural field model with general con-

nectivity between layers. Spatial heterogeneity within layers, velocity input, and
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Figure 4.1: Schematic of multilayer network features. (A) Purely excitatory long-
range interlaminar connectivity is activated by regions of high activity such as
the bump attractor solution in layer 1 (u1(x, t)), projecting to similarly tuned lo-
cations in layer 2, reinforcing the position of the activity bump there (u2(x, t)).
(B) Different network topologies as specified by the weight functions (w jk, j 6= k)
are explored in two layer networks (feedforward, symmetric, and asymmetric) as
well as three layers (directed ring, inward star). (C) Local heterogeneities within
each layer introduced into the recurrent weight functions w j j, Eq. (4.1), generate
preferred locations for the bump attractor solutions to the model Eq. (4.2). We con-
sider a variety of networks, which possess different attractor structures in each of
their constituent layers. Continuous attractors possess marginally stable bump
solutions at each location around the ring, while chains of discrete attractors pos-
sess stable nodes (blue dots) where bumps prefer to reside separated by saddles
(red circles). (D) Velocity integration via the asymmetric integral term involving
wv jk in Eq. (4.1) causes bump attractor solutions to move about the domain, incre-
menting position in proportion to the velocity amplitude.
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noise are all assumed to be weak (O(ε)):

du j =

[
−u j +

N

∑
k=1

∫ π

−π
w jk(x, y) f (uk(y, t))dy +εv(t)

N

∑
k=1

wv jk ∗ f (uk)

]
dt +εdZ j,

(4.1)

where u j(x, t) denotes the average neural synaptic input at location x ∈ [−π , π ]

at time t in network layer j ∈ {1, 2, ..., N}, and wv jk ∗ f (uk) =
∫ π
−π wv jk(x −

y) f (uk(y, t))dy is a convolution. Note that we have restricted the spatial domain

to be one-dimensional and periodic. There are several experimental examples of

spatial working memory which operate on such a domain including oculomotor

delayed-response tasks for visual memory [65, 160] as well as spatial navigation

along linear tracks [12, 167]. While we suspect that several of our findings ex-

tend to two-dimensional spatial domains [117], we reserve such analysis for fu-

ture work. Recurrent synaptic connectivity within layers is given by the collection

of kernels w j j(x, y), and we allow these functions to be spatially heterogeneous,

rather than simply distance-dependent. We thus define them as

w j j(x, y) := (1 +εh j(y))w j j(x− y), (4.2)

where the impact of the heterogeneity h j(y) is weak (ε � 1), and w j j(x − y) is

only dependent on the distance |x − y|. As opposed to recurrent connectivity,

we assume the interlaminar connectivity (w jk, j 6= k) is homogeneous, so we can

always write w jk(x, y) = w jk(x− y). The homogeneous portion of the recurrent

connectivity in each layer is locally excitatory and laterally inhibitory: e.g., the

unimodal cosine function

w j j(x− y) = cos(x− y), (4.3)
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which we use in some of our computations. Similarly, we will often consider a

cosine shaped excitatory weight function for interlaminar connectivity:

w jk(x− y) = w̄ jk(1 + cos(x− y)). (4.4)

We introduce homogeneous, distance-dependent kernels for the connectivity be-

tween layers. This is motivated by recent experimental work demonstrating that

several brain areas involved in spatial working memory are reciprocally coupled

to one another [42, 50], and these areas all tend to have similar topographically or-

ganized delay period activity [65, 84, 131]. Thus, we expect that topologically or-

ganized connectivity would be re-enforced via Hebbian plasticity rules [95, 119].

Such connectivity functions tend to generate stationary bump solutions within

each layer [76, 86, 90, 100], and we will analyze these solutions in some detail in

Section 4.2. Other lateral inhibitory functions, such as sums of multiple cosine

modes, will also generate stationary bump solutions but they do not qualitatively

alter the dynamics of the system.

Note, the general form of the weight functions w jk(x) allows us to explore a

variety of network topologies, and their impact on the dynamics of bump attrac-

tors. For example, it is clear that a feedforward network (Fig. 4.1A) will primarily

be governed by the dynamics of the upstream layer. However, the dynamics of

bumps in more intricate networks (Fig. 4.1B) are more nuanced. Applying both

linear stability analysis and perturbation theory to bumps in Section 4.2, we can

explore the specific impacts of different conformations of w jk(x). Furthermore, we

expect the heterogeneities arising in local connectivity Eq. (4.2) will interact with

interlaminar connectivity to shape the overall dynamics of bumps (Fig. 4.1C).
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The effects of velocity inputs are accounted for by the second integral term

in Eq. (4.1), based on a well tested model of the head direction system [141] as

well as spatial navigation models that implement path integration [107, 127]. We

explicitly derive this form by reducing a double ring model (Appendix A) or a

2N ring model (Appendix B). While some of these models use multiple layers

to account for different velocity directions [30, 164], the essential dynamics are

captured by a single-layer with recurrent connections modulated by velocity in-

put [118, 168]. Since we are studying motion along a one-dimensional space, the

weak (ε � 1) velocity input εv(t) to each neural activity layer u j(x, t) is given

by a scalar variable which can be positive (for rightward motion) or negative (for

leftward motion) as shown in Fig. 4.1D. We derive a reduction of the double ring

model (one ring for each velocity direction) of velocity integration presented in

[164] to a single layer for velocity (positive or negative) in the Appendices. The

connectivity functions wv jk(x− y) targeting each layer j should be interpreted as

interactions that are shaped by an incoming velocity signal to that layer. Essen-

tially, this connectivity introduces asymmetry into the weight functions, which

will cause shifts in the position of spatiotemporal solutions. Typically, this weight

function is chosen to be of the form wv(x− y) = −w′(x− y), in single layers [168].

In the absence of any heterogeneity, such a layer will have bumps that propagate

at velocity precisely equal to εv(t) [118]. As shown in the Appendices A and B, we

can extend this previous assumption to incorporate velocity-related connectivity

that respects the interlaminar structure of the network, so that

wv jk(x− y) = − d
dx
[
w jk(x− y)

]
. (4.5)

89



4.1. MULTILAYER NEURAL FIELD WITH SPATIAL HETEROGENEITY

As we demonstrate in Section 4.2.3, this results in bump solutions that propagate

with velocity εv(t).

Dynamic fluctuations are a central feature of neural activity, and they can often

serve to corrupt task pertinent signals, creating error in cognitive tasks [57]. The

error in spatial working memory tasks tends to build steadily in time, in ways that

suggest the process underlying the memory may evolve according to a continuous

time random walk [13, 160]. As there is no evidence of long timescale correlations

in the underlying noise process, we are satisfied to model fluctuations in each

individual layer of our model using a spatially correlated white noise process:

dZ j(x, t) =
∫
Ω
F j(x− y)dYj(y, t)dy,

where F j is the spatial filter of the noise in layer j and dYj(x, t) is a spatially

and temporally white noise increment. We define the mean and covariance of the

vector (dZ1, dZ2, ..., dZn):

〈dZ j(x, t)〉 ≡ 0 〈dZ j(x, t)dZk(y, s)〉 = C jk(x− y)δ(t− s)dtds, (4.6)

where C jk(x − y) is the even symmetric spatial correlation term, and δ(t) is the

Dirac delta function.

Subsequently, we will analyze the existence and stability of stationary bump

solutions to Eq. (4.1) in Section 4.2.1. Since we will perform this analysis under

the assumption of spatially homogeneous synaptic weight functions (h j(x) ≡ 0 in

Eq. (4.2)), these solutions will be marginally stable to perturbations that shift their

position. However, once we incorporate noise, heterogeneity, and velocity inputs

in Section 4.2.3, we can perturbatively analyze their effects by linearizing about
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the stationary bump solutions. The low-dimensional stochastic system we derive

will allow us to study the impact of multilayer architecture on the processing of

velocity inputs in Section 4.3.

4.2 Bump attractors in a multilayer neural field

Our analysis begins by constructing stationary bump solutions to Eq. (4.1) for

an arbitrary number of layers N and even, translationally-symmetric synaptic

weight functions w jk(x− y). Note, there are a few recent studies that have exam-

ined the existence and stability of stationary bump solutions to multilayer neural

fields [62, 63, 86]. In particular, Folias and Ermentrout studied bifurcations of sta-

tionary bumps in a pair of lateral inhibitory neural field equations [63]. They

identified solutions in which bumps occupied the same location in each layer

(syntopic) as well as different locations (allotopic), and they also demonstrated

traveling bumps and oscillatory bumps that emerged from these solutions. How-

ever, they did not study the general problem of an arbitrary number of N layers,

and their analysis of networks with asymmetric coupling was relatively limited.

Since the solutions will form the basis of our subsequent perturbation analysis

of heterogeneity and noise, we will outline the existence and stability analysis of

bumps first, for an arbitrary number of layers N. The reader is advised to consult

the works of Folias and Ermentrout for a more detailed characterization of the

possible bifurcations of stationary patterns in a pair of neural fields [62, 63]. We

also note that, while we are restricting our analysis to the case of one-dimensional
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domains, we expect our results to extend to two or more dimensions as demon-

strated in [117]. Furthermore, previous experiments in rats have probed the be-

havior and neurophysiological underpinnings of spatial navigation along linear

tracks [12, 167]. Thus, we believe the model we analyze here would be perti-

nent to these cases in which the environment is nearly one-dimensional. After we

characterize the stability of stationary bump solutions, we will consider the effects

of weak perturbations to these solutions, which will help reveal how noise, het-

erogeneity, and interlaminar coupling shape the network’s processing of velocity

inputs.

4.2.1 Existence of bump solutions

In the absence of a velocity signal (v(t) ≡ 0) and heterogeneity (h j(x) ≡ 0, ∀ j), we

can characterize stationary solutions to Eq. (4.1), given by u j(x, t) = U j(x). Con-

ditions for the existence of stable stationary bumps in single layer neural fields

have been well-characterized [4, 19, 72, 102], but much remains in terms of under-

standing how the form of w jk(x− y) would impact the existence and stability of

bumps in a multilayer network. Furthermore, the stationary equations for bump

solutions are a form of the well-studied Hammerstein equation [8, 74], and bump

stability is characterized by Fredholm integral equations of the second kind [10].

For our purposes, we will construct bumps under the assumption that they ex-

ist. Then, we will employ self-consistency, to determine solution validity. This is

straightforward in the case of a Heaviside nonlinearity f (u) = H(u−θ), Eq. (1.3),

but we can derive some results for general nonlinearities f (u). First, note that, in
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the case of translationally symmetric kernels w jk(x− y), we obtain the following

convolution relating stationary solutions U j(x) in each layer to one another:

U j(x) =
N

∑
k=1

∫ π

−π
w jk(x− y) f (Uk(y))dy, j = 1, ..., N. (4.7)

In later analysis, we will also find the formula for the spatial derivative useful:

U′j(x) =
N

∑
k=1

∫ π

−π
d

dx
w jk(x− y) f (Uk(y))dy, j = 1, ..., N. (4.8)

Next, since each U j(x) must be periodic in x ∈ [−π , π ], we can expand it in a

Fourier series

U j(x) =
M

∑
l=0

Al j cos(lx) +
M

∑
m=1

Bm j sin(mx), (4.9)

where M is the maximal integer index of a mode for bumps in all N layers. Indeed,

there will be a finite number of terms in the Fourier series, Eq. (4.9), under the as-

sumption that the weight functions w jk(x− y) all have a finite Fourier expansion.

Since most typical smooth weight functions are well approximated by a few terms

in a Fourier series [148], we take this assumption to be reasonable. Once we do so,

we can construct solvable systems for the coefficients of the bumps, Eq. (4.9), and

their stability as in [35]. For even symmetric weight kernels, we can write

w jk(x− y) =
M

∑
m=0

C jkm cos(m(x− y))

=
M

∑
m=0

C jkm [cos(mx) cos(my) + sin(mx) sin(my)] ,

so that Eq. (4.7) implies that

Al j =
N

∑
k=1

C jkl

∫ π

−π
cos(lx) f (Uk(x))dx, (4.10a)

Bm j =
N

∑
k=1

C jkm

∫ π

−π
sin(mx) f (Uk(x))dx. (4.10b)
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Since the noise-free, heterogeneity-free system is translationally invariant, there

is a family of solutions with center of mass at any location on x ∈ [−π , π ]. Fur-

thermore, the evenness of the weight functions w jk(x− y) we have chosen implies

the resulting system is reflection symmetric, so we can restrict our examination to

even solutions, so Bm j ≡ 0 for all m, j, so Eq. (4.9) becomes

U j(x) =
N

∑
l=0

Al j cos(x). (4.11)

Plugging the formula Eq. (4.11) into Eq. (4.10), we find

Al j =
N

∑
k=1

C jkl

∫ π

−π
cos(lx) f

(
N

∑
m=0

Amk cos(mx)

)
dx. (4.12)

The coefficients Al j can be found using numerical root finders [148]. However,

for particular functions f and w jk, we can project the system Eq. (4.12) to a much

lower-dimensional set of equations, which can sometimes be solved analytically.

For instance, consider the Heaviside nonlinearity f (u) = H(u−θ), Eq. (1.3).

In this case, stationary bump solutions u j(x, t) = U j(x) centered at x = 0 are

assumed to have superthreshold activity on the interval x ∈ [−a j, a j] in each layer

j = 1, ..., N; i.e. U j(x) > θ for x ∈ [−a j, a j]. Applying this assumption to the

stationary Eq. (4.7) yields

U j(x) =
N

∑
k=1

∫ ak

−ak

w jk(x− y)dy.

Self-consistency then requires that U j(±a j) = θ, as originally pointed out by

Amari [4], which allows us to write

θ =
N

∑
k=1

∫ ak

−ak

w jk(a j − y)dy, j = 1, ..., N. (4.13)
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Again, Eq. (4.13) is a system of nonlinear equations, which can be solved numer-

ically via root-finding algorithms. However, as opposed to the integral terms in

Eq. (4.12), the integrals in Eq. (4.13) are tractable, which makes for a more straight-

forward implementation of a root-finder. If we utilize the canonical cosine-weight

functions, Eq. (4.3) and (4.4), we find we can carry out the integrals in Eq. (4.13) to

yield:

θ = sin(2a j) + ∑
k 6= j

2w̄ jk
[
ak + cos(a j) sin(ak)

]
. (4.14)

Henceforth, we mostly deal with the specific case of cosine-weight connectivity,

although we suspect our results extend to the case of more general weight func-

tions. This allows us to define connectivity simply using the scalar strength values

of the interlaminar coupling, which comprise the off-diagonal entries of the fol-

lowing matrix: W jk =
{

w̄ jk : j 6= k; 1 : j = k
}

for j, k = 1, ..., N. As discussed in

Section 4.1, and specifically Fig. 4.1B, we categorize the network graphs of pri-

mary interest to our work here into the main cases of a two-layer network and

some specific cases of a network with more layers. We now briefly demonstrate

how such graph structures can impact the stationary solutions, as it foreshadows

the impact on the non-equilibrium dynamics of the network.

Two-layer symmetric network (w̄12 ≡ w̄21 = w̄). In this case, we can derive a

few analytical results concerning the bifurcation structure of stationary bump so-

lutions. However, to identify the half-widths a1 and a2, it is typically necessary to

solve Eq. (4.14) numerically to produce the plots shown in Fig. 4.2A. First of all,

for double-bump solutions, in which both layers possess stationary superthresh-

old activity, if we assume symmetric solutions, so that a1 = a2 = a, then we can

95



4.2. BUMP ATTRACTORS IN A MULTILAYER NEURAL FIELD
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Figure 4.2: Bump half-width plots for two-layer (N = 2) networks with f (u) =
H(u − θ), Eq. (1.3), and coupling functions Eq. (4.3) and (4.4), as given by
Eq. (4.14). (A,B,C) Bifurcation diagrams for half-width of bumps in the red
layer shown in network diagram above. (A) Half-width a1 of the bump in layer
u1 in a symmetric network, plotted as a function of threshold θ, as given by
Eq. (4.16). Stable (solid) and unstable (dashed) branches of double bumps anni-
hilate in a saddle-node (SN) bifurcation at low threshold θ, and at high threshold
θ. (B) Half-width a1 as a function of θ in an asymmetric network, as given by
Eq. (4.16). (C) Bump half-width a2 in a feedforward network, given by the sin-
gle Eq. (4.17), shows both single bumps and double bump branches annihilate at
the same upper threshold θ = 1. (D) Critical coupling w̄21 and input strength I0
for I(x) = I0 cos(x) needed to instantiate a single bump in layer 1 or a double
bump solution, in a feedforward network, where θ = 0.3. Shaded regions are
generated by numerically simulating Eq. (4.1), and thick blue lines are calculated
theoretically. (E) Half-width a1 of the layer 1 bump of a double-bump solution
for a recurrent network with w̄21 = 0.3 over a range of coupling strength w̄12 and
threshold θ. Partitions demonstrate that a stable 1-bump solution also coexists in
a subregion of the domain. No 2-bumps exist in the white region. (F) Half-width
a2 of the layer 2 bump of a double bump solution for a feedforward network over
a range of coupling strength w̄21 and threshold θ. Stable 1-bumps exist below
the magenta line. For sufficiently large coupling w̄21 and low threshold, only the
‘all-on’ solution exists in layer 2.
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write Eq. (4.14) as

θ = (1 + w̄) sin(2a) + 2w̄a ≡ G(a). (4.15)

We cannot solve the transcendental Eq. (4.15) explicitly for the bump half-width

a. In order to gain some insight, we can identify the range over which solutions

to the equations exist. This can be determined explicitly by finding the turning

points of the right hand side of Eq. (4.15) (See blue dots in Fig. 4.2A,B,C), corre-

sponding to the extrema of the function between which solutions exist. Thus, we

can determine the location of these turning points, which are saddle-node (SN)

bifurcations, by differentiating the right hand side G(a):

G′(a) = 2(1 + w̄) cos(2a) + 2w̄,

so by requiring G′(ac) = 0, we have

ac =
1
2

cos−1
[

w̄
1 + w̄

]
, π − 1

2
cos−1

[
w̄

1 + w̄

]
,

matching the locations of the double-bump SN bifurcations (blue dots) shown in

Fig. 4.2A.

Furthermore, SN bifurcations associated with the coalescing of stable single-

bump branches with unstable double-bump branches (purple dots in Fig. 4.2A,B,C)

can be determined using a threshold condition. For instance, given a layer 1 bump

with half-width a1, we require the stationary solution in layer 2 (u2 = U2(x))

remains subthreshold (U2(x) < θ, x ∈ [−π , π ]). Given a2 = 0 in Eq. (4.14),

single bump solutions in layer 1 satisfy θ = sin(2a1), so au = 1
2 sin−1θ, as =

π
2 − 1

2 sin−1θ are solutions with as corresponding to the stable bump [90]. Thus,
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we require U2(x) = 2w̄(a1 + sin(a1) cos(x)) < θ, so selecting for the maximal

value of U2(x) and plugging in as, we have an explicit equation for the critical

interlaminar strength w̄ above which there are no stable single bump solutions:

w̄c = sin(2as)/ [as + sin(as)], providing an implicit equation for the SN locations

in Fig. 4.2A,B,C, and corresponding to the magenta curves in Fig. 4.2E,F.

Two-layer asymmetric network (w̄12 6= w̄21). Double-bump solution half-widths

tend to differ in this case a1 6= a2, obeying the pair of implicit equations

θ = sin(2a1) + 2w̄12 [a2 + cos(a1) sin(a2)] , (4.16a)

θ = sin(2a2) + 2w̄21 [a1 + cos(a2) sin(a1)] , (4.16b)

which we solve numerically to generate the branches plotted in Fig. 4.2B, as well

as the surface plot in Fig. 4.2E. Note, however, it is still possible to determine the

range of values in which stable single-bump solutions exist in layer j using the

requirement w̄k j < sin(2as)/ [as + sin(as)], as derived in the symmetric network

case.

Two-layer feedforward network (w̄12 ≡ 0). This is a special case of the asymmetric

network, where the nonlinear system, Eq. (4.14), defining the bump half-widths

reduces to:

θ = sin(2a1), θ = sin(2a2) + 2w̄21 [a1 + cos(a2) sin(a1)] ,

which can further be reduced to a single implicit equation for the half-width in

the target layer 2 (see schematic in Fig. 4.2C):

θ = sin(2a2) + 2w̄21

[
π

2
− 1

2
sin−1θ+

cos(a2)

2

(√
1−θ+

√
1 +θ

)]
, (4.17)
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which can be solved using numerical root finding to yield the curves in Fig. 4.2C,F.

‘All-on’ solutions in the two-layer network. Given excitatory interlaminar connec-

tions, it is possible to generate ‘all-on’ solutions in one and sometimes two layers

of the network. An ‘all-on’ solution is one in which a layer has a stationary solu-

tion U j(x) that is entirely superthreshold, U j(x) > θ for all x ∈ [−π , π ]. In the

case of a feedforward network (Fig. 4.2C,F), the target layer 2 will have an ‘all-

on’ solution when the minimal value of U2(x) > 0 given a stable bump solution

U1(x) in layer 1. As a result, an ‘all-on’ solution in layer 2 would have the form

U2(x) = 2w̄21 [a1 + sin(a1) cos(x)] ,

so requiring minx[U2(x)] > θ yields

w̄21

[
π − sin−1θ−

√
1−θ−

√
1 +θ

]
> θ,

obtaining equality along the grey line plotted in Fig. 4.2F. For recurrent networks,

we can easily identify the threshold curves (w̄ jk,θ) above which double ‘all-on’

solutions exist. These have the simpler forms:

U1(x) = 2w̄12π , U2(x) = 2w̄21π ,

so we need to require that w̄12 > θ/(2π) and w̄21 > θ/(2π).

Critical input needed for activation of bumps. We are studying multilayer net-

works wherein we assume bump solutions can be instantiated by an external in-

put. However, it is important to identify the critical input needed to nucleate and

maintain such bumps in the two layers of the network. As demonstrated in Fig.
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4.2A,B,C, there are multiple stable stationary solutions across a range of threshold

θ and coupling values (w̄12, w̄21).

We wish to demonstrate that it is possible to instantiate a two-bump solution

given only an input, I(x) = I0 cos(x), to layer 1, and we focus exclusively on

the feedforward network. This single layer will only have subthreshold activ-

ity if I0 cos(x) < θ everywhere. If input is superthreshold (I0 > θ), stationary

bump solutions, driven by an input in layer 1, are then given [60, 76]: U1(x) =

[2 sin(a1) + I0] cos(x). Thus, bumps driven by inputs just beyond the critical

level I0 = θ, will have half-widths approximately satisfying θ = sin(2a1) +

θ cos(a1). These bumps will have half-widths then given by the implicit equation

θ(a1) := sin(2a1)/(1 − cos(a1)) = 2 cos(a1) cot(a1/2). For values of θ(a1) > 0

with a1 ∈ [0, π ], we can show that this function is monotone decreasing, since

θ′(a1) = −2 cos(a1)− csc2(a1/2) < 0 when 0 < a1 < ac
1 ≈ 2.2372. In this case,

θ(a1) ≈ −0.6006. Therefore, as θ(a1) will tend to increase as a1 is decreased from

ac
1, so for θ > 0 we expect a single stable stationary bump solution in layer 1 (See

also [60, 90]). This suggests either single-bump or double-bump solutions will

emerge as long as I0 > θ, as shown in Fig. 4.2D. Increasing the strength of in-

put I0 will only serve to further stabilize this stationary bump. To determine the

critical strength needed to propagate this bump forward to layer 2, we must solve

for the half-width a1 in θ = sin(a1) + I0 cos(a1), and require that layer 2 is driven

superthreshold, so that U2(0) = 2w̄21 [a1 + sin(a1)] > θ. This admits an explicit

inequality w̄21 > θ
2[a1+sin(a1)]

, so we need only solve for a1 numerically to obtain

the vertical boundary between single and double bump solutions in Fig. 4.2D.
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4.2.2 Linear stability of bumps

Linear stability of the bump solutions U j(x), Eq. (4.7), can be determined by ana-

lyzing the evolution of small, smooth, separable perturbations such that u j(x, t) =

U j(x) + εeλtψ j(x). We expect u j = U j(x) ( j = 1, ..., N) to be neutrally stable to

translating perturbations ψ j = U′j(x), arising from the translation symmetry of

Eq. (4.1) given w jk(x, y) = w jk(x− y). On the other hand, the bump may be lin-

early stable or unstable to perturbations of its half-width a j [4]. The results we

derive here for such perturbations are what determine the stability of branches

plotted in Fig. 4.2.

To begin, consider u j(x, t) = U j(x) + εΨ j(x, t), where Ψ j(x, t) thus describes

perturbations to the shape of the bump U j(x) that may evolve temporally. Plug-

ging this into the full neural field Eq. (4.1) with h j ≡ 0, Z j ≡ 0, and v ≡ 0, we can

apply the stationary Eq. (4.7), and subsequently write the O(ε) equation as

∂Ψ j(x, t)
∂t

= −Ψ j(x, t) +
N

∑
k=1

∫ π

−π
w jk(x− y) f ′(Uk(y))Ψk(y, t)dy. (4.18)

Due to the linearity of the equation, we may apply separation of variables to each

Ψ j, such that Ψ j(x, t) = b j(t)ψ j(x) [128, 148]. Substituting into Eq. (4.18), we have

for each j = 1, ..., N:

b′j(t)

b j(t)
= −1 +

1
ψ j(x)

N

∑
k=1

∫ π

−π
w jk(x− y) f ′(Uk(y))ψk(y)dy. (4.19)

Thus, each side of Eq. (4.19) depends exclusively on a different variable, x or t,

so both must equal a constant λ. Therefore, b j(t) = c jeλt for all j = 1, ..., N, sug-

gesting perturbations will grow indefinitely as t → ∞ for Reλ > 0, indicating
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instability. While oscillatory instabilities are plausible (Reλ > 0 with Imλ 6= 0),

given specific forms of interlaminar coupling (e.g., combinations of interlaminar

excitation and inhibition [63]), we did not identify such instabilities in the mutual

excitatory layered networks we studied (Fig. 4.2). Thus, we expect instabilities

emerging where Reλ = 0 will typically be of saddle-node type (Imλ = 0). Fur-

thermore, the equation for ψ j(x) is now given for all j = 1, ..., N, as

(λ+ 1)ψ j(x) =
N

∑
k=1

∫ π

−π
w jk(x− y) f ′(Uk(y))ψk(y)dy. (4.20)

Eigenvalues λ are thus determined by consistent solutions (λ,ψ(x)) for ψ =

(ψ1,ψ2, ...,ψN)
T, to Eq. (4.20). One such solution is (λ,ψ(x)) = (0, U′(x)) for

U′ = (U′1, U′2, ..., U′N)
T, as can be shown by applying Eq. (4.8). As mentioned

above, this demonstrates the neutral stability of bump solutions to translating

perturbations, due to the translational invariance of Eq. (4.1).

Further analysis in the case of a general firing rate function f (u) can be diffi-

cult. However, if we consider the Heaviside nonlinearity f (u) = H(u−θ) given

by Eq. (1.3), we obtain a specific case of Eq. (4.20), which is easier to analyze [4, 45]:

(λ+ 1)ψ j(x) =
N

∑
k=1
γk

(
w jk(x− ak)ψk(ak) + w jk(x + ak)ψk(−ak)

)
, (4.21)

where we have made use of the fact that

f ′(U j(x)) = δ(U j(x)−θ) = δ(x + a j)

U′j(−a j)
− δ(x− a j)

U′j(a j)
=
δ(x + a j) + δ(x− a j)

|U′j(a j)|
,

(4.22)

since U′j(−a j) = −U j(a j) > 0, and we have assigned

γ−1
j = |U′(a j)| =

N

∑
k=1

[
w jk(a j − ak)− w jk(a j + ak)

]
, j = 1, ..., N, (4.23)
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under the assumption that w jk(x) is monotone decreasing in |x|, which is the case

for cosine weight functions, Eq. (4.3) and (4.4). Note, all eigenfunctions ψ(x) of

Eq. (4.21) that satisfy the conditions ψ j(±a j) = 0, for all j = 1, ..., N, have associ-

ated eigenvalue given by (λ + 1)ψ = 0 so λ = −1, which does not contribute

to any instabilities. To specify other eigensolutions, we examine cases where

ψ j(±a j) 6= 0 for at least one j = 1, ..., N. In such cases, we can obtain expressions

for the eigenvalues by examining Eq. (4.21) at the points x = ±a1,±a2, ...,±aN.

In this case, the eigenfunctions ψ are defined by their values at the threshold-

crossing points: ψ j(±a j) for each j = 1, ..., N. Thus, defining these unknown

values A±j := ψ j(±a j), we simplify Eq. (4.21) to a linear system of 2N equations

of the form

(λ+ 1)v = Wv, v = (A+
1 , ..., A+

N , A−1 , ..., A−N)
T , W =

A− A+

A+ A−

 , (4.24)

where the elements of the blocks of the 2N× 2N matrix W are (A±) jk = γkw jk(a j±

ak). We make use of the result |W| = |A− + A+||A− − A+| [136], which im-

plies the set of eigenvalues λW of W is the union of the set of the eigenvalues of

A− + A+ and A− − A+. Subsequently, the eigenvalues of W − I will be λ =

λW − 1. We now outline a few examples in which we can compute these eigenval-

ues analytically.

Two-layer feedforward network. Assuming w12 ≡ 0, layer 1 sends input to layer

2, but receives no feedback from layer two. Linear stability associated with the

stationary bump solutions to this model is then determined in part by computing
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u1

u2

A B C

Figure 4.3: Linear stability of bumps in a feedforward two-layer network, demon-
strated by simulations of the model Eq. (4.1) with N = 2. (A) When the bump in
layer 1 is shifted, the bump in layer 2 (dashed line) relaxes to the new position of
bump 1 (solid line). (B) When the bump in layer 2 is shifted, it relaxes back to the
fixed position of bump 1. (C) When both bumps are shifted, both retain their new
position, respecting the translation symmetry of the underlying Eq. (4.1).

the eigenvalues of:

A− +A+ =

γ1w+
11 0

γ1w+
21 γ2w+

22

 , A− −A+ =

γ1w−11 0

γ1w−21 γ2w−22

 , (4.25)

where w±jk := γ j
(
w jk(a j − ak)± w jk(a j + ak)

)
. Since the matrices in Eq. (4.25) are

triangular, their eigenvalues λW are given by their diagonal entries. Applying

Eq. (4.23), γ−1
j = ∑

N
k=1 w−jk, we can express eigenvalues λ = λW − 1 of W− I as:

λ = {λ−1 , λ−2 , λ+1 , λ+2 } =
{

0,− w−21
w−21 + w−22

,
2w11(2a1)

w−11
,

2w22(2a2)− w−21
w−21 + w−22

}
.

Neutral stability with respect to the eigenfunction ψ = U′ ensures the existence

of λ−1 = 0. Concerning the other three eigenvalue formulae, the terms w−jk will be

positive by our assumptions on the weights w jk made after Eq. (4.23), so λ−2 < 0,
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corresponding to the fact that the bump in layer 2 is linearly stable to translating

perturbations, when the position of the bump in layer 1 is held fixed. In Fig. 4.3,

we show that the upstream layer (1) governs the long term location of both bumps.

The layer 2 bump always relaxes to the layer 1 bump’s location. In a related way,

the eigenvalues λ+1 and λ+2 correspond to expansions/contractions of the bump

widths in layers 1 and 2, respectively. Typically, there are two bump solutions in a

single-layer network, whose width perturbations correspond with the eigenvalue

λ+1 : one that is narrow and unstable to such perturbations (λ+1 > 0), and another

that is wide and stable to such perturbations (λ+1 < 0) [4, 45, 90]. Lastly, the bump

in layer 2, driven by activity in layer 1 is influenced by features of layers 1 and 2,

as shown in the formula for λ+2 . When 2w22(2a2) < 0, we expect λ+2 < 0, and the

bump will be stable to width perturbations.

Exploding star network. Another example architecture involves a single layer

with feedforward projections to multiple (N − 1) layers. In this case, w jk ≡ 0 for

j = 2, ..., N and k 6= j. Only perturbations that shift the bump in layer 1 have a

long term impact on the position of bumps in the network. The translation modes

of bumps in layers j = 2, ..., N have associated negative eigenvalues, as we will

show, which is a generalization of the two-layer feedforward case. Linear stability

is computed by first determining the eigenvalues of:

A− ±A+ =



γ1w±11 0 ... 0

γ1w±21 γ2w±22 ... 0
...

... . . . ...

γ1w±N1 0 ... γNw±NN


. (4.26)
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Subtracting one from the eigenvalues of the matrices in Eq. (4.26) and applying

the formula for γ j, Eq. (4.23), we find 2N eigenvalues, given by λ±j for j = 1, ..., N,

where

λ−1 = 0, λ+1 =
2w11(2a1)

w−11
,

and

λ−j = −
w−j1

w−j1 + w−j j
, λ+j =

2w j j(2a j)− w−j1
w−j1 + w−j j

, j = 2, ..., N.

As in the two-layer network, bumps are neutrally stable to perturbations of the

form ψ = U′, corresponding to λ−1 = 0. In addition, we expect λ−j < 0 for

j = 2, ..., N since w−jk > 0. As mentioned above, we would expect wide bumps to

be stable to expansion/contraction perturbations, whose stability is described by

the eigenvalues λ+j for j = 1, ..., N.

Two-layer recurrent network. In the case of a fully recurrent network, where

w̄ jk > 0 for all j 6= k, all matrix entries are nonzero: A−±A+ =

γ1w±11 γ2w±12

γ1w±21 γ2w±22

.

First, note that λW = 1 is an eigenvalue of A− − A+, since (w−11 + w−12)(w
−
22 +

w−21) · |A− −A+ − I| = w−12w−21 − w−12w−21 = 0, so we denote λ−1 = 0 as the eigen-

value describing the translation symmetry of bumps. To gain further insight, we

can also compute the other three eigenvalues:

λ−2 = − w−12
w−11 + w−12

− w−21
w−22 + w−21

,

λ+1,2 =
γ1w+

11 +γ2w+
22 − 2±√ω

2
.

where

ω =
[
γ1w+

11 +γ2w+
22 − 2

]2 − 4γ1γ2

[
(w+

11 −γ−1
1 )(w+

22 −γ−1
2 )− w+

12w+
21

]
.
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u1

u2

A B C

Figure 4.4: Linear stability of bumps in a two-layer symmetric recurrent network
with w̄12 = w̄21 > 0, demonstrated by simulations of the model Eq. (4.1) with
N = 2. Bumps initially at the same position x = 0 are perturbed to examine the
resulting evolution of their positions. (A) When the bump in layer 1 (solid line)
is shifted, both bumps relax to the average of their initially perturbed position.
(B) When the bump in layer 2 (dashed line) is shifted, again, both bumps relax to
an intermediate position. (C) When both bumps are shifted to the same location,
both retain their new position.

For a symmetric recurrent network: w j j ≡ w, w jk ≡ wc, and γ j = γ ( j = 1, 2, k 6=

j), these formulas reduce to λ−2 = − 2w−c
w− + w−c

and λ+ := λ+1,2 = γw+ − 1± w+
c .

Bumps are linearly stable to perturbations that move them apart (Fig. 4.4A,B), and

neutrally stable to translations that move them to the same location (Fig. 4.4C).

Imploding star graphs. Additional dimensions of neutral stability can arise in

the case of more than two layers, depending on the graph defining interlaminar

connectivity. For instance, if there are multiple layers j = 1, ..., l that receive no

feedback from other layers, then γ jw−j j = 1 for j = 1, ..., l, so the first l rows of the

matrix A− −A+ are the canonical unit vectors e1, ..., el. Thus, there are at least

l unity eigenvalues of W, implying λ = 0 has multiplicity at least l in Eq. (4.24),
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u1

u2

u3

A B C

Figure 4.5: Linear stability of bumps in a N = 3 layer imploding star network
with w̄ jk ≡ 0 for j 6= 3, k 6= j. (A) When the bump in layer 1 (solid line) is shifted,
the bump in layer 3 (dashed line) relaxes to a position between the layer 1 and
layer 2 (dotted line) bump. (B) When both bumps in layers 1 and 2 are perturbed
to a new location, the bump in layer 3 relaxes to that new location. (C) When only
the bump in layer 3 is perturbed, it relaxes back to the locations of the bumps in
layer 1 and 2.

corresponding to the neutral stability of bumps in the l layers that receive no feed-

back. We consider such an example when N = 3:

A− +A+ =


γ1w+

11 0 0

0 γ2w+
22 0

γ1w+
31 γ2w+

32 γ3w+
33

 , A− −A+ =


1 0 0

0 1 0

γ1w−31 γ2w−32 γ3w−33

 .
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Eigenvalues of Eq. (4.24) are then λ−j = 0 and λ+j =
w+

j j − w−j j

w−j j
for j = 1, 2, and

λ−3 =
−(w−12 + w−13)

w−11 + w−12 + w−13
, λ+3 =

w+
33 − (w−31 + w−32 + w−33)

w−31 + w−32 + w−33
.

Bumps in both layers 1 and 2 are neutrally stable to translations (Fig. 4.5A,B),

whereas the bump in layer 3 is linearly stable to translation, relaxing to a weighted

average of the positions of the layers 1 and 2 bumps (Fig. 4.5C). Adding dimen-

sions to the space of translation symmetric perturbations will change the low-

dimensional approximation that captures the dynamics of multilayer bump solu-

tions in response to noise perturbations (Compare Sections 4.2.3 and 4.4).

Directed loop of N layers. As a last example, we consider an N-layer directed

loop, wherein each layer provides feedforward synaptic input to a subsequent

layer. As a result, there is a band of nonzero interlaminar coupling along w j+1, j

for j = 1, .., N (replace N + 1 with 1). Again, there is a zero eigenvalue λ in

Eq. (4.24), since

A− −A+ =



γ1w−11 0 · · · γNw−1N

γ1w−21 γ2w−22 0 · · ·

0 . . . . . . 0

0 0 γN−1w−N,N−1 γNw−NN


.

Our desired result can be demonstrated by computing the determinant of the bidi-

agonal matrix:

|A− −A+ − I| =
N

∏
j=1

(γ jw−j j − 1)−
N

∏
j=1

[
−γ jw j+1, j

]
= 0,
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replacing j − 1 = 0 with N in the case j = 1. We have applied the fact that

γ−1
j = w−j j + w−j, j−1 to transform the first product to the form of the second.

4.2.3 Derivation of the effective equations

Our stability analysis has provided us insight into the qualitative behavior of the

multilayer bump solutions when small perturbations are applied. The underlying

architecture both within and between layers shapes the response. We now extend

our linear stability results to study the impact of persistent noise perturbations

to stationary bump solutions, with heterogeneity as described by Eq. (4.2) and

velocity input described by Eq. (4.5). We begin by assuming that first, we only

need to consider a single stochastically-evolving position, ∆(t), corresponding to

the relative location of the entire multilayer bump solution. This assumes a single

dimension of translation symmetry in the linear stability problem of the bump

solution, computed in Section 4.2.2. Cases in which more than one such dimen-

sion exists will be analyzed in Section 4.4. Secondly, we assume a separation of

timescales between the position and width perturbations of each bump, leading to

the ansatz: u j(x, t) := U j(x−∆(t)) +εΦ j(x−∆(t), t), where Φ j describes the dy-

namics of shape perturbations to the bump in layer j. In line with previous studies

of the impact of noise on patterns in neural fields [19, 90], the displacement of the

bump from its initial position is assumed to be weak and slow, so that ∆(t) and

d∆(t) areO(ε). We find that the results of our perturbation analysis are consistent

with this assumption. Since the spatial heterogeneity, velocity, and noise are all

scaled by ε, we expect them to enter into the derived effective equation. Note, in

110



4.2. BUMP ATTRACTORS IN A MULTILAYER NEURAL FIELD

the case of weak interlaminar coupling, we would consider a separate stochastic

variable ∆ j for each layer’s bump [24, 86]. Plugging our ansatz into Eq. (4.1) and

disregarding higher order terms O(ε2), the following equation in O(ε) remains:

dΦ j(x, t) =
[
L j
[
Φ(x, t)

]
+
∫ π

−π
h j(y + ∆)w j j(x− y) f (U j(y))dy

+ v(t)
N

∑
k=1

∫ π

−π
wv jk(x− y) f (Uk(y))dy

]
dt (4.27)

+ε−1d∆U′j(x) + dZ j(x, t),

whereL j is the jth element of the linear functionalL : p 7→ q for p = (p1, p2, ..., pN)
T

and q = (q1, q2, ..., qN)
T, defined as

L j
[
p(x)

]
= −p j(x) +

N

∑
k=1

∫ π

−π
w jk(x− y) f ′(Uk(y))pk(y)dy, j = 1, ..., N,

with adjoint operator L∗ : q 7→ p, defined 〈Lp, q〉 = 〈p,L∗q〉 under the standard

L2 inner product, and thus given element-wise by

L∗j
[
q(x)

]
= −q j(x) + f ′(U j(x))

N

∑
k=1

∫ π

−π
wk j(x− y)qk(y)dy, j = 1, ..., N,

note the exchange in the order of the indices in wk j(x). Note also that Eq. (4.27)

suggests that ∆ and d∆ should be O(ε). To ensure boundedness of solutions

Φ(x, t), we require the inhomogeneous portion of Eq. (4.27) to be orthogonal to

the nullspace of the adjoint operator L∗. The nullspace of L∗ is defined as the

solution to the equation L∗
[
ϕ(x)

]
= 0,ϕ = (ϕ1,ϕ2, ...,ϕN)

T, such that

ϕ j(x) = f ′(U j(x))
N

∑
k=1

∫ π

−π
wk j(x− y)ϕk(y)dy. (4.28)

To derive explicit solutions to Eq. (4.28), we must make further assumptions on

either the firing rate function f (u) or the weight functions w jk(x). For instance, if
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we assume symmetric interlaminar connectivity, such that w jk(x) ≡ wk j(x) for all

j, k = 1, ..., N, then we can show thatϕ j(x) = f ′(U j(x))U′j(x) (for all j = 1, ..., N)

is a solution to Eq. (4.28). This can be verified by applying integration by parts

after plugging the expression into the integrand:

ϕ j(x) = f ′(U j)
N

∑
k=1

wk j(x) ∗
[

f ′(Uk(x))U′k(x)
]

= f ′(U j)
N

∑
k=1

w jk(x) ∗
[

f ′(Uk(x))U′k(x)
]

= f ′(U j)
d

dx

N

∑
k=1

w jk(x) ∗ f (Uk(x)) = f ′(U j(x))U′j(x),

where we have applied Eq. (4.8) in the last equality. Solutions can also be found

for more general weight functions (w jk(x) 6≡ wk j(x)), assuming f (u) = H(u−θ),

the Heaviside nonlinearity, Eq. (1.3), as we demonstrate in Section 4.2.4.

Assuming we can solve Eq. (4.28), we enforce boundedness by taking the inner

product ofϕ(x) with Eq. (4.27). For the time being, we assume the null space of

L∗ is one-dimensional, and address other cases in Section 4.4. Thus, we take the

null vectorϕ(x) and compute its inner product with the inhomogeneous portion

of Eq. (4.27) to yield:

0 =
N

∑
j=1

〈
ϕ j(x),

[
L j [Φ(x, t)] +

∫ π

−π
h j(y + ∆)w j j(x− y) f (U j(y))dy

+v(t)
N

∑
k=1

wv jk ∗ f (Uk)dy

]
dt +ε−1d∆U′j(x) + dZ j(x, t)

〉
.

Rearranging terms leads to the following one-dimensional stochastic differential

equation:

d∆(t) = [q(∆(t)) +εv(t)] dt + dZ(t), (4.29)
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where the terms on the right hand side include a weighted average of each layer’s:

(a) spatial heterogeneity q(∆), (b) velocity εv(t), and (c) noise Z(t). The impact of

local spatial heterogeneity in each layer on the effective position ∆(t) is given by

q(∆) = εΥ

[
N

∑
j=1

∫ π

−π
ϕ j(x)

(∫ π

−π
h j(y + ∆)w j j(x− y) f (U j(y))dy

)
dx

]
, (4.30)

where

Υ = −
(

N

∑
j=1
µ j

)−1

, µ j =
∫ π

−π
ϕ j(x)U′j(x)dx, j = 1, ..., N, (4.31)

so in the absence of any velocity or noise, local attractors of the network are

given by ∆̄ where q(∆̄) = 0. Furthermore, the potential function, which deter-

mines statistical quantities such as mean first-passage times, is given by Q(∆) =

− ∫ ∆−π q(s)ds. Next, note that the effective velocity input to the multilayer bump

solution is precisely εv(t), which can be shown by applying our assumption on

the weight functions wv jk(x), Eq. (4.5), to compute

Υ

[
v(t)

N

∑
j=1

∫ π

−π
ϕ j(x)

N

∑
k=1

∫ π

−π
wv jk(x− y) f (Uk(y))dydx

]
= v(t),

where we have reduced the numerator by applying Eq. (4.8). Finally, the effective

noise to the stochastic position variable ∆(t) is given by the spatially averaged

and weighted process

dZ(t) = εΥ
[

N

∑
j=1

∫ π

−π
ϕ j(x)dZ j(x, t)dx

]
,

which has zero mean 〈Z(t)〉 = 0 and variance 〈Z(t)2〉 = D̄t, where we can apply
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Eq. (4.6) for noise correlations to compute

D̄ =
N

∑
j=1

N

∑
j=1

D jk,

D jk = ε
2Υ2

∫ π

−π

∫ π

−π
ϕ j(x)ϕk(y)C jk(x− y)dydx, j, k = 1, ..., N, (4.32)

demonstrating the contribution of the effective noise acting on ∆(t) will be deter-

mined by a weighted average of the noises from each layer j = 1, ..., N. To deter-

mine specific features of the dynamics of Eq. (4.29), we further define constituent

functions of the model Eq. (4.1). To begin, we reduce the formulae considerably

by focusing on the Heaviside nonlinearity, f (u) = H(u − θ), Eq. (1.3), allowing

for analytic calculations of the above quantities.

4.2.4 Results for a Heaviside firing rate

As demonstrated in Section 4.2.2, assuming the firing rate function is a Heavi-

side nonlinearity, f (u) = H(u − θ), Eq. (1.3), can allow for direct calculation of

eigensolutions to the linear stability problem for bumps (λψ = Lψ). Identifying

the nullspace of the adjoint linear operator is a related problem (L∗ϕ ≡ 0), and

assuming f (u) = H(u − θ) projects the infinite-dimensional problem to a 2N-

dimensional linear system. We then need only solve for a vector whose entries cor-

respond to the coefficients of delta functions, as discussed in [88]. To demonstrate,

we first apply our formula for the derivative f ′(U j(x)) = γ j
[
δ(x− a j) + δ(x + a j)

]
,

Eq. (4.22), and our formula for γ j, Eq. (4.23). The delta functions contained in

f ′(U j(x)) concentrate Eq. (4.28) forϕ j(x) at the set of 2N points of the bump radii,

x = {±a1,±a2, ...,±aN}. This suggest the ansatzϕ j(x) = α jδ(x− a j) +β jδ(x +
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a j). Plugging these assumptions into Eq. (4.28) reduces it to the form:

ϕ j(x) = γ j
[
δ(x− a j) + δ(x + a j)

] N

∑
k=1

∫ π

−π
wk j(x− y)

(
αkδ(y− a j) +βkδ(y + a j)

)
dy

= γ j

N

∑
k=1

[
αkwk j(a j − ak) +βkwk j(a j + ak)

]
δ(x− a j)

+γ j

N

∑
k=1

[
αkwk j(a j + ak) +βkwk j(a j − ak)

]
δ(x + a j), j = 1, ..., N.

Recalling that we have defined ϕ j(x) = α jδ(x − a j) + β jδ(x + a j), we generate

equations for the constants α j and β j ( j = 1, ..., N) by requiring self-consistency

at x = {±a1,±a2, ...,±aN}:

α j = γ j

N

∑
k=1
αkwk j(a j − ak) +βkwk j(a j + ak), β j = γ j

N

∑
k=1
αkwk j(a j − ak) +βkwk j(a j + ak),

for j = 1, ..., N, which can be expressed concisely as the 2N-dimensional linear

system:

z = W∗z, z =

 α

β

 = (α1, ...,αN ,β1, ...,βN)
T , W∗ =

 A∗− A∗+
A∗+ A∗−

 , (4.33)

where W∗ is the adjoint of the matrix defined in Eq. (4.24), the linear stability

problem for stationary bumps. The system, Eq. (4.33), can be written out in terms

of its block matrix structure as

α = A∗−α +A∗+β, β = A∗−β+A∗+α, (4.34)

which can be rearranged into the corresponding block matrix equations forα± =

α ±β:

α+ = (A∗− +A∗+)α+, α− = (A∗− −A∗+)α−. (4.35)
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For a nontrivial solution to Eq. (4.34) to exist, there must be a nontrivial solution to

either system in Eq. (4.35). As demonstrated in Section 4.2.2, there is always a non-

trivial solution to x = (A− −A+) x, corresponding to the translation symmetric

perturbation of the linear stability operator defined in Eq. (4.20). As this implies

an eigenvalue of unity associated with (A− −A+), there must also be an eigen-

value of unity associated with (A∗− −A∗+). In general, we do not expect nontrivial

solutions to x = (A− +A+) x, and thus expect none for α+ = (A∗− +A∗+)α+.

This means, we expect α+ ≡ 0, so β ≡ −α. Thus, we need only solve the N-

dimensional system α = (A∗− −A∗+)α. Applying these results to Eq. (4.29), we

find a more tractable form for the integral terms defining each of the components:

q(∆) = εΥ
N

∑
j=1
α j

∫ a j

−a j

h j(y + ∆)
[
w j j(a j − y)− w j j(a j + y)

]
dy,

where now Υ =
(

2 ∑
N
j=1α j|U′j(a j)|

)−1
for j = 1, ..., N, using the fact that U′(−a j) =

−U′j(a j) > 0. Lastly, note the summed components of effective diffusion coeffi-

cient D̄ are given by direct evaluations of the correlation functions

D jk = 2ε2Υ2α jαk
[
C jk(a j − ak)− C jk(a j + ak)

]
, j, k = 1, ..., N,

reflecting the fact that noise primarily impacts the threshold-crossing points of the

bumps, initially at x = ±a j, j = 1, ..., N.

Mirroring our discussion in the linear stability Section 4.2.2, we now discuss

those cases with respect to the adjoint problem and note how they reflect the re-

sults derived there.

Two-layer feedforward network. Assuming w12 ≡ 0, layer 1 receives no feedback
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from layer 2. In this case, the coefficientsα1 andα2 are given by

α1 =
w−11α1 + w−21α2

w−11
, α2 =

w−22α2

w−21 + w−22
, (4.36)

which has solutions α2 = 0 and α1 arbitrary, so the dynamics of the reduced

system is entirely determined by those of layer 1. Layer 2 tracks the motion of the

bump in layer 1, since α2 = 0: D̄ = D11 and q(∆) = −εµ−1
1
∫ π
−πϕ1(x)

∫ π
−π h1(y +

∆)w11(x− y) f (U1(y))dydx.

Exploding star network. For an arbitrary number of layers N, and w jk ≡ 0 for

j = 2, ..., N and k 6= j, layer 1 receives no feedback from other layers and layers

2, ..., N only receive input from layer 1. In this case, the coefficientsα j are given

α1 =
∑

N
k=1 w−k1αk

w−11
, α j =

w−j jα j

w−j j + w−j1
, (4.37)

which has solutions α j = 0 for j 6= 1 and α1 arbitrary. All other layers track

layer 1, thus the dynamics of the independent layer 1: D̄ = D11 and q(∆) =

−εµ−1
1
∫ π
−πϕ1(x)

∫ π
−π h1(y + ∆)w11(x − y) f (U1(y))dydx. We shall treat the case

of an imploding star in Section 4.4.

Two-layer recurrent network. In the case of a fully recurrent network, w̄ jk > 0 for

all j 6= k, we find the N = 2 case yields the following set of equations for α1 and

α2:

α1 =
w−11α1

w−11 + w−12
+

w−21α2

w−11 + w−12
, α2 =

w−12α1

w−22 + w−21
+

w−22α2

w−22 + w−21
,

which can be reduced to the much simpler single equation, w−12α1 = w−21α2, so

clearly (α1,α2) = (w−21, w−12) is a solution as shown in [88]. Thus, if w21(x) is

the stronger connectivity function, then α1 will tend to be larger and layer 1 will
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have a larger influence on the overall dynamics. We see this clearly in the limiting

feedforward case, in which w12(x) ≡ 0.

Directed loop of N layers. Lastly, we consider a directed loop of N layers, wherein

w jk ≡ 0 unless k = j or k = j− 1 (k = N for j = 1). In this case, the equations for

α j are written

α j =
w−j jα j

w−j j + w−j, j−1
+

w−j+1, jα j+1

w−j j + w−j, j−1
, j = 1, ..., N,

where j− 1 = N for j = 1 and j + 1 = 1 for j = N. Rearranging terms demon-

strates that w−j, j−1α j = w−j+1, jα j+1, so α j = 1/w−j, j−1 ( j = 1, ..., N) satisfies the

system.

4.3 Numerical simulations

In this section, we perform further analysis on Eq. (4.29) and compare with numer-

ical simulations of Eq. (4.1). We are mainly interested in the interaction between

noise and the spatial heterogeneity described by the nonlinear function q(∆) in

Eq. (4.29). In the absence of any velocity input, v(t) ≡ 0, we compute an ef-

fective diffusion coefficient Deff, approximating the variance of ∆(t) given any

periodic heterogeneity q(∆) (Fig. 4.6A). In essence, we must compute the mean

first-passage time for trips between local attractors of Eq. (4.29). Velocity inputs

subsequently tilt the potential determined by Q(∆) = − ∫ ∆−π [q(s) +εv(t)] ds, so

there is a bias in the direction of escapes from local attractors (Fig. 4.6B). Impor-

tantly, noise allows for propagation of bumps in instances where bumps would
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Figure 4.6: Effective diffusion and velocity calculations for the low-dimensional
system, Eq. (4.29). For a gradient function q(∆) with period L, we can determine
the average (A) diffusion of ∆(t) when v(t) ≡ 0 and (B) velocity when v(t) 6= 0.
(A) The effective diffusion coefficient De f f = L2/(2〈T〉) approximates the mo-
tion of the bump by tracking hops between neighboring potential wells that are
distance L apart, where average time between hops is 〈T〉 [90, 105, 124]. (B) Veloc-
ity inputs tilt the potential Q(∆), so, for example, the probability of a rightward
transition is greater than a leftward one (p+ > p−). In this case, the bump has a
nonzero effective velocity, approximated ve f f = L(p+ − p−)/〈T〉 [105].

otherwise be stationary. We demonstrate the details of this analysis, and compare

with simulations below.

4.3.1 Specific multilayer architectures

We now focus on specific examples of Eq. (4.29), where statistics of the resulting

dynamics can be determined semi-analytically.

Two-layer networks. We begin by assuming N = 2 with internal coupling is

w j j(x) = cos(x) with local heterogeneity h j(x) = σ j cos(n jx) and interlaminar

connectivity w jk(x) = w̄ jk(1 + cos x)/2 ( j = 1, 2, k 6= j). Note, this distinguishes

this study from previous work in [86, 88], which assumed homogeneous connec-

tivity. We determined in Section 4.2.4 thatα1 = w−21 andα2 = w−12, allowing us to
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calculate the integrals in Eq. (4.30) directly

q(∆) = −2εΥ
(

w−21C1 sin(a1) sin(n1∆) + w−12C2 sin(a2) sin(n2∆)
)

where Υ is given by Eq. (4.31) as

Υ =
1

2
(
w−21 sin(a1)(2 sin(a1) + w̄12 sin(a2)) + w−12 sin(a2)(2 sin(a2) + w̄21 sin(a1)

)
and the impact of the heterogeneities scales like

C j = σ j
2n j sin(a j) cos(n ja j)− 2 cos(a j) sin(n ja j)

n2
j − 1

, j = 1, 2, (4.38)

for n j 6= 1. When n j = 1, we may take the limit as n j → 1 of Eq. (4.38) so that

C j = σ j
(

sin(a j) cos(a j)− a j
)
/2. Finally, we specify the spatial noise correlations

as C j j(x) = π cos(x) for j = 1, 2 and C jk(x) ≡ 0 for k 6= j, so D jk ≡ 0 for k 6= j

and the noise Zt has diffusion coefficient

D̄ = D11 + D22 = 4ε2Υ2π
[(

w−21
)2 sin2(a1) +

(
w−12
)2 sin2(a2)

]
.

We now examine two specific cases of two-layer networks, simplifying these for-

mulae further.

Two-layer feedforward network. In the case w̄12 = 0, formulae for α1 and α2

are given in Eq. (4.36), and without loss of generality we can set α1 = 1 and

α2 = 0. Stochastic dynamics of the multilayer bump are thus approximated by the

dynamics of the bump in layer 1, so bump in layer 2 tracks bump 1’s position. The

nonlinearity q(∆) = −εC1 sin(n1∆)/(2 sin(a1)) and the diffusion coefficient D̄ =

D11 = πε2/(4 sin2(a1)). Thus, the effective potential determining the bump’s

position ∆(t) is:

Q(∆) := −
∫ ∆

−π
[q(s) +εv(t)] ds = −εC1 cos(n1∆(t))

2n1 sin(a1)
−εv(t)∆(t).
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We use this in determining the theoretical curves plotted in Figs. 4.7 and 4.8,

which we calculate in Section 4.3.2. Essentially, we project the dynamics of Eq. (4.29)

to a continuous-time Markov process whose transition rates are determined by the

escape times from the local attractors, as illustrated in Fig. 4.6.

Two-layer symmetric network. In the case w̄ jk = w̄c, we have a j = a and α j = 1

( j = 1, 2, k 6= j), yielding the simplified equations for the heterogeneity,

q(∆) = −ε [C1 sin(n1∆) + C2 sin(n2∆)] / [(4 + 2w̄c) sin(a)], and for the diffusion

coefficient, D̄ = πε2/
[
2(2 + w̄c)2 sin2(a)

]
. Note, the effective noise has diffu-

sion coefficient that is substantially decreased as opposed to the single-layer or

feedforward case [88]. Fluctuations are dampened by introducing loops in the

connectivity of the multilayer network. Again, these functional forms are utilized

in Figs. 4.7 and 4.8.

Exploding star network. These results can also be generalized to N-layer net-

works that possess a valid one-dimensional projection described by Eq. (4.29).

Another example is that of an exploding star, discussed in Section 4.2.4. Assum-

ing w jk ≡ 0 for j = 2, ..., N and k 6= j, the coefficients, as computed in Eq. (4.37),

are α j = 0 for j > 1 and α1 = 1. Thus, the dynamics of the stochastically-

driven bump solution are determined by the dynamics of the independent layer

1, and other layers track these dynamics. Also, the constituent functions of the

low-dimensional approximation will be exactly that of the two-layer feedforward

example.

Directed loop of N layers. Finally, we demonstrate the calculations for a directed

loop of N layers, wherein w jk ≡ 0 unless k = j or k = j− 1 (k = N for j = 1).
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The coefficients α j = 1/w−j, j−1, as computed in Section 4.2.4. Assuming h j(x) =

σ j cos(n jx), w j, j−1(x) = w̄ j, j−1
(
1 + cos(x)

)
/2, and w j j(x) = cos(x), our low-

dimensional approximation has form

q(∆) = −2εΥ
N

∑
j=1

C j sin(a j)

w−j, j−1
sin(n j∆), D̄ = 4ε2πΥ2

N

∑
j=1

(
sin(a j)

w−j, j−1

)2

,

with Υ defined by Eq. (4.31). The coefficients C j are a function of a j which have the

form C j = 2σ j
[
n j sin(a j) cos(n ja j)− cos(a1) sin(n ja j)

]
/(n2

j − 1) for n j 6= 1 and

C j = σ j
(

sin(a j) cos(a j)− a j
)
/2 for n j = 1. Consider symmetry in the strength of

synaptic connectivity, so that w̄ j, j−1 = w̄c and a j = a for j = 1, ..., N, and

q(∆) = −ε
∑

N
j=1 C j sin(n j∆)

N(2 + w̄c) sin(a)
, D̄ =

ε2π

N(2 + M1)2 sin2(a)
.

We use these results in Fig. 4.7C.

With the constituent functions known, we analyze the stochastic differential

equation to approximate the mean position 〈∆(t)〉 and variance 〈∆2(t)〉 of the

bump’s position.

4.3.2 Effective diffusion and velocity of the low-dimensional model

Velocity integration must often be performed by spatial working memory net-

works involved in navigation or the head direction system [68, 94, 107]. We con-

sider the two main sources of error that could be incurred by a heterogeneous

network subject to fluctuations. First, noise-driven diffusion of the remembered

position will cause a degradation of spatial memory over time [40, 91]. Second,

heterogeneities will lead to erroneous integration of the velocity inputs, since the
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network will not integrate them perfectly [26, 134]. Thus, errors made in encod-

ing the true position will arise from the noise term dZt in Eq. (4.29) as well as the

heterogeneity q(∆), so dZt ≡ 0 and q(∆) ≡ 0 would yield perfect integration.

We can asymptotically quantify these contributions to error by approximating (a)

the effective diffusion: 〈∆2(t)〉 − 〈∆(t)〉2 ≈ De f f t, and (b) the effective velocity:

〈∆(t)〉 ≈ ve f f t.

Effective diffusion. To compare with our results from full numerical simula-

tions, we begin by deriving the effective diffusion coefficient of a bump evolving

in a spatially heterogeneous network. This leverages previous results on trans-

port in periodic potentials [105, 124]. In the absence of velocity inputs, v(t) ≡ 0,

we can approximate the stochastic motion of a bump by tracking the nearest

positional attractor to its vicinity [90, 91]. Given a gradient function q(∆) in

Eq. (4.29), attractors ∆̄ obey q(∆̄) = 0. For instance, gradient functions of the form

q(∆) = −|K| sin(n∆) have stable (unstable) attractors at ∆̄s =
2 jπ

n (∆̄u = (2 j+1)π
n ).

In our network, the distance xs between two stable attractors may not be equal

to the period L of the gradient function (q(∆) = q(∆+ L)). In this case, we can

either: (a) construct the corresponding continuous-time Markov chain model and

compute the stochastic motion as such or (b) use a first passage time calculation

to determine the mean time 〈T〉 until the bump evolves one period L and use

this in the standard effective diffusion calculation. We opt for the latter, so to be-

gin, we note the general form of the effective diffusion coefficient (Details of the
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derivation can be found in [90, 91, 105]):

De f f =
D̄ · L2

〈T〉 =
D̄ · L2∫ L

0

∫ L

0
eQ(x)−Q(y)dydx

, (4.39)

where Q(∆) = − ∫ ∆−π q(s)ds is the potential given by integrating the gradient

function as such. In the case of gradient functions q(∆) = ∑
N
j=1 K j sin(n j∆), the

period of the potential will be L = (2π)/nmin where nmin = min{n1, ..., nN}.

Integrals in Eq. (4.39) arising from simple trigonometric-potential functions like

Q(∆) = κ cos(n∆) can be expressed in terms of modified Bessel functions [90, 91].

However, the mixed mode potentials of interest do not yield integrals that can be

evaluated analytically. Thus, for our comparisons with numerical simulations in

Figs. 4.7 and 4.9, we simply evaluate these integrals using numerical quadrature.

We find that the asymptotic approximation 〈∆2(t)〉 ≈ De f f t captures the trends

in numerical simulations reasonably well. In Fig. 4.7A, we analyze the diffusion

of bumps in a multilayer network with the same spatial heterogeneity function in

each layer (h1(x) ≡ h2(x)). As in previous work [86], increasing the strength of

interlaminar connectivity decreases the rate at which the variance scales in time.

Furthermore, the purely feedforward network has far-higher variance than a net-

work with weakly recurrent coupling, since the network bump position is con-

trolled by a single layer. As a result, the noise cancelation that arises from recur-

rent coupling is not apparent. In Fig. 4.7B, we study the effects of having two lay-

ers with different spatial heterogeneity (h1(x) = σ1 cos(4x), h2(x) = σ2 cos(8x)).

Note the multimodal shape of the effective potential Q(∆). As a result, different

feedforward architectures (1 7→ 2 vs. 2 7→ 1) can lead to substantially different
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Figure 4.7: Variance 〈∆2(t)〉 of the bump solutions in the absence of a velocity
input (v(t) ≡ 0) for fixed heterogeneities h j(x) = σ j cos(n jx) ( j = 1, 2) and varied
interlaminar connectivity strengths w̄12 and w̄21. Qualitative descriptions of the
associated potential functions Q(∆) of each network are plotted below each panel.
(A) Plots in the case of symmetric heterogeneity (n1 = n2 = 8; σ1 = σ2 = 0.25)
with feedforward connectivity (blue curves: w̄12 = 0.3, w̄21 = 0), asymmetric
connectivity (red curves: w̄12 = 0.3, w̄21 = 0.1), and symmetric connectivity
(magenta curves: w̄12 = w̄21 = 0.3). We find that statistics calculated from nu-
merical simulations of the low-dimensional system (circles), Eq. (4.29) are well
matched to statistics of simulations of the full model (dashed line), Eq. (4.1).
Variances approximated by our effective diffusion calculation 〈∆2(t)〉 = De f f t,
Eq. (4.39), are given by solid lines. Note, as interlaminar connectivity increases
in strength, the variance scales more slowly with time. (B) Plots in the case of
asymmetric heterogeneity (n1 = 4, n2 = 8; σ1 = 0.05, σ2 = 0.25) where the
the low-frequency (n1 = 4), more stable layer determines dynamics (blue curves:
w̄12 = 0.3, w̄21 = 0); high-frequency (n2 = 8), less stable layer determines dynam-
ics (red curves: w̄12 = 0, w̄21 = 0.3); and symmetric coupling (magenta curves:
w̄12 = w̄21 = 0.3). (C) Plots for a system with N = 3 layers where the heterogene-
ity: h1(x) = 0.01 cos(4x), h2(x) = 0.025 cos(8x), h3(x) = 0.25 cos(16x). Connec-
tivity is taken to be feedforward (red curves: w̄21 = w̄32 = 0.3, w̄ jk = 0 for all
other k 6= j) and a symmetric loop (blue curves: w̄13 = w̄21 = w̄32 = 0.3, w̄ jk = 0
for all other k 6= j). In all panels, ε = 0.1. Numerical simulations of the full model,
Eq. (4.1), were performed using Euler-Maruyama with timestep dt = 0.01 with
direct integration of convolution using dx = 0.01 and 106 realizations to compute
ensemble statistics.
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variances, depending on whether the more stable layer 1 or less stable layer 2

determines the dynamics. Lower-frequency spatial heterogeneities tend to stabi-

lize bumps more to stochastic perturbations, generally leading to a lower effective

diffusion [90, 91]. Here, we show that this feature influences which interlaminar

coupling architectures are best for reducing variance in spatial working memory.

Lastly, we study a three-layer network in Fig. 4.7C. A fully recurrent architecture

reduces the diffusion of the bump more than a feedforward architecture, even

when the feedforward architecture is dominated by the layers that are more ro-

bust to noise perturbations (h1(x) = σ1 cos(4x), h2(x) = σ2 cos(8x)). When inter-

laminar coupling from the less stable layer is incorporated (h3(x) = σ3 cos(16x)),

variance drops. Having validated our theory of effective diffusion for networks

without velocity inputs, we now study the interaction of velocity inputs, noise,

and spatial heterogeneity in multilayer networks.

Effective velocity. We now explore the impact of noise and spatial heterogeneity

on the integration of velocity. While an analogous formula for the effective diffu-

sion could also be derived, the results are quite similar to the case of no velocity

inputs discussed above. Thus, we primarily consider how noise and heterogene-

ity contribute to the integration of velocity, as this will also be the main source of

error when the network is integrating velocity.

Consider a velocity function v(t) that is piecewise constant in time (v(t) ≡ v j

on t j < t < t j+1), corresponding to the saltatory motion common to foraging

animals [110]. In this case, we can approximate the effective velocity ve f f of bumps

in the spatial working memory network, Eq. (4.1), by again computing the mean
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A B

Figure 4.8: Bumps driven by velocity inputs (εv(t) ≡ v0 > 0) impacted by spatial
heterogeneities (h1(x) = σ1 cos(n1x), h2(x) = σ2 cos(n2x)) and noise. (A) Plots
of the mean bump position 〈∆(t)〉 for homogeneous networks (top lines: σ1 =
σ2 = 0), identical heterogeneity (middle lines: n1 = n2 = 16; σ1 = σ2 = 1), and
differing heterogeneity (bottom lines: n1 = 8, n2 = 16; σ1 = σ2 = 1) in the layers.
Note the top lines represent perfect integration of the v0 = 0.015 velocity input
in the ensemble average 〈∆(t)〉, whereas incorporating heterogeneity slows the
propagation of bumps, so the velocity is integrated imperfectly. The theoretical
lines (solid) computed from Eq. (4.40) match the results of numerical simulations
(dashed lines) quite well. (B) Plot of the effective velocity ve f f of the ensemble
versus the input velocity v0 as the noise strength is varied (bottom to top: ε =
0, 0.1, 0.2. We fix the heterogeneity so that n1 = n2 = 8 in all curves, andεσ j = 0.4,
so that even in the limit of no noise (ε → 0), there is spatial heterogeneity. In the
absence of noise, heterogeneity causes the bump to become pinned for sufficiently
small velocity input v0. Introducing noise causes the average effective velocity
ve f f = 〈∆(t)〉/t to approach the input velocity v0. Blue solid lines are from theory
Eq. (4.40), and circles are from numerical simulations. Black line is ve f f = v0. For
both panels, the coupling strength is symmetric: w̄12 = w̄21 = 0.3. Numerical
simulations of the full model (dashed lines) are as described in Fig. 4.7.

time of a transit of the variable ∆(t) across one period L of the potential Q(∆).

We slightly abuse the notion of a period, since the velocity input v j will skew

the potential as Q(∆) = − ∫ ∆−π q(s)ds − εv j∆, so really L represents the period

of the q(∆) portion of the potential. Our approximation proceeds by tracking the

expected number of hops the bump makes. Hops occur when the bump leaves the

vicinity of its local attractor and arrives in the vicinity of a neighboring attractor,
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presumably a distance L away. Note, for multimodal potentials, we must account

for the multiple attractors in a single period L, but we forgo those details here.

Hops can be rightward χ+(t) or leftward χ−(t), so we track the difference χ(t) :=

χ+(t)− χ−(t) to determine the rightward displacement. Shifting coordinates to

assume the bump begins at ∆(0) = 0, we can approximate the position of the

bump ∆(t) = L · χ(t). Since the counting process χ(t) is Markovian, we need

only know the hop rates p±/〈T〉 to compute 〈χ(t)〉 = [p+ − p−] t/〈T〉, where p+

(p−) is the probability of a rightward (leftward) hop. The escape probabilities p±,

mean escape time 〈T〉, and effective velocity of the bump ve f f = L · χ(t)〉/t can be

calculated directly from Eq. (4.29) with the potential Q(∆):

ve f f =
L(p+ − p−)
〈T〉 , p+ = 1− p− =

1
1 + e−v0L/D̄

,

〈T〉 = p+
D̄

∫ L

0

∫ x

x−L
e

Q(x)−Q(y)
D̄ dydx. (4.40)

We compare our formula for the effective velocity, Eq. (4.40), to results from nu-

merical simulations in Fig. 4.8A. As the amplitude of heterogeneity increases, the

effective speed of traveling bumps decreases, given identical velocity input. This

is in line with previous studies on the impact of heterogeneities on wave propaga-

tion [17, 118]. However, we also show that as the amplitude of noise is increased,

the effective velocity ve f f gets closer to v0 (Fig. 4.8B). This is due to the fact that

noise-induced transitions between local attractors become more frequent, and the

motion of the bump reflects the asymmetry in the potential Q(∆). In the case of

large-amplitude noise, D̄ � 1, we can approximate the transition probabilities

and mean first-exit time in Eq. (4.40) using linearization in the small parameter
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4.3. NUMERICAL SIMULATIONS

1/D̄: p+ ≈
1
2
+

v0L
4D

and 〈T〉 ≈ L2

2D̄
, yielding ve f f ≈ v0. Thus, while the effec-

tive diffusion will also tend to increase with D̄, the effective velocity will grow

to more closely match the true input velocity, similar to results discussed in the

optimal-transport framework of [105].

In the absence of noise (D̄ → 0), we can no longer assume the bump stochas-

tically transitions between local attractors. In fact, for persistent propagation in

the network to occur, the gradient function q(∆) must have no zeroes, so that

∆̇(t) = q(∆) > 0 for all ∆, assuming v0 > 0. In this case, we can compute the

time TL =
∫ L

0

d∆
q(∆)

it takes to traverse a single period L, and compute the ef-

fective velocity: ve f f = L/TL (For more details, see[118]). For example, when

∆̇(t) = −K sin(n∆) + v0, the time it takes to traverse the length L = 2π/n is

TL = 2π/
[
m
√

v2
0 − K2

]
so ve f f = 2π/(mT) =

√
v2

0 − K2. Clearly, if v0 ≤ K, this

theory predicts the bump becomes pinned to a local attractor of the network, due

to the spatial heterogeneity. The lower curve in Fig. 4.8B compares this theory

with simulations of the noise-free version of the model Eq. (4.1), and indeed we

find that heterogeneities then pin bumps so that ve f f = 0, in the absence of noise.

On the other hand, the bump propagates in the presence of noise, so the velocity

signal is detectable whereas it would not be in a noise-free paradigm, providing

an example of stochastic resonance [106].

We conclude that, not only does our low-dimensional approximation describe

bump dynamics in a multilayer network, it provides further insight into how het-

erogeneity, noise, and interlaminar coupling impact the encoding of input signals.

129



4.4. NETWORKS WITH MULTIPLE INDEPENDENT MODULES

Noise degrades positional information, but strong spatial heterogeneity and in-

terlaminar coupling can stabilize bump positions over long-delay periods. While

heterogeneity disrupts integration of velocity inputs, sufficiently strong noise can

restore mean-bump propagation speeds to be close to the input velocity. Thus,

there is a tradeoff between the stabilizing effects of heterogeneity and the result-

ing disruption of velocity integration, which we shall explore more in future work.

4.4 Networks with multiple independent modules

Our reduction to the low-dimensional system carried out in Section 4.2.3 relied

on the assumption that the multilayer bump solution possessed one marginally

stable mode of perturbation. Thus, noise and velocity perturbations were always

effectively integrated by the bumps in each layer by the same amount, so the mul-

tilayer bump moved coherently. However, if the interlaminar weight functions

w jk of the network Eq. (4.1) are defined such that multiple layers receive no feed-

back from other layers, those independent layers only integrate perturbations of

their own activity. Consider the three-layer imploding star network presented in

Fig. 4.5: Shifting the bump in layer 1 does not impact the dynamics of the layer

2 bump. Thus, only noise perturbations local to those layers impact their activity

(Fig. 4.9). This suggests we need to modify our derivation of a low-dimensional

system to account for this independence.

This idea can be applied to a class of cases wherein w jk ≡ 0 for j = 1, ..., M,

where M ≤ N, and k 6= j. With this assumption, we must now assume each
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4.4. NETWORKS WITH MULTIPLE INDEPENDENT MODULES

bump in each layer j = 1, ..., M has an independent phase ∆ j. Subsequently, the

remaining phases ∆k for k = M + 1, ..., N depend on the first M phases. Since

layers 1, ..., M dominate the dynamics, we ignore the impacts of heterogeneity in

layers M + 1, ..., N, so h j(x) ≡ 0 for j = M + 1, ..., N. To begin, we consider the

ansatz u j(x, t) = U j(x− ∆ j(t)) +εΦ j(x− ∆ j(t), t) for all j = 1, ..., N. Plugging

this into Eq. (4.1) and truncating to O(ε), we have:

dΦ j =

[
L j
[
Φ
]
+ w j j(x) ∗

[
f (U j(x))h j(x + ∆ j)

]
+ v(t)

N

∑
k=1

wv jk ∗ f (Uk)

]
dt

+ε−1d∆ jU′j + dZ j, j = 1, ..., M, (4.41a)

dΦ j =

[
L j [Φ] + v(t)

N

∑
k=1

wv jk ∗ f (Uk) + ∑
k 6= j

w jk ∗
[

f ′(Uk)U′k
]
(∆ j − ∆k)

]
dt

+ε−1d∆ jU′j + dZ j, j = M + 1, ..., N, (4.41b)

where we have linearized the terms

f (U j(x + ∆ j − ∆k)) = f (U j(x)) + f ′(U j(x))U′j(x)(∆ j − ∆k)

and recall F(x) ∗ G(x) =
∫ π
−π F(x − y)G(y)dy. While the linearization in (∆ j −

∆k) assumes the quantity remains small, our approximation performs reasonably

well, even when bumps are substantially separated in numerical simulations (Fig.

4.9). Note, L j is the jth element of the linear functional L : p 7→ q for p =

(p1, p2, ..., pN)
T and q = (q1, q2, ..., qN)

T, defined as

L j
[
p(x)

]
= −p j(x) + w j j(x) ∗

[
f ′(U j(x))pk(x)

]
, j = 1, ..., M,

L j
[
p(x)

]
= −p j(x) +

N

∑
k=1

w jk(x) ∗
[

f ′(Uk(x))pk(x)
]

, j = M + 1, ..., N,
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4.4. NETWORKS WITH MULTIPLE INDEPENDENT MODULES

with adjoint operator L∗ : q 7→ p, defined 〈Lp, q〉 = 〈p,L∗q〉 under the standard

L2 inner product, and thus given element-wise by given for j = 1, ..., N,

L∗j
[
q(x)

]
= −q j(x) + f ′(U j(x))

[
w j j(x) ∗ q j(x) +

N

∑
k 6= j; k=M+1

wk j(x) ∗ qk(x)

]
.

To ensure boundedness of solutions Φ(x, t), we require the inhomogeneous por-

tion of Eq. (4.41) to be orthogonal to the nullspace of the adjoint operator L∗.

Vectors ϕ = (ϕ1,ϕ2, ...,ϕN)
T that reside in the nullspace of L∗ are solutions to

the equation L∗
[
ϕ(x)

]
= 0, such that

ϕ j(x) = f ′(U j(x))

[
w j j(x) ∗ϕ j(x) +

N

∑
k 6= j; k=M+1

wk j(x) ∗ϕk(x)

]
, j = 1, ..., N.

(4.42)

Solutions of Eq. (4.42) can be identified by recalling the formula for the spatial

derivative of U j(x), given by Eq. (4.8), and noting that for j = 1, ..., N, we have

U′j(x) =
∫ π

−π
d

dx
w j j(x− y) f (U j(y))dy =

∫ π

−π
w j j(x− y) f ′(U j(y))U′j(y)dy.

Therefore, if we set ϕ j(x) = f ′(U j(x))U′j(x) for a single index j = 1, ..., M and

ϕl(x) ≡ 0 otherwise, then for that index j, Eq. (4.42) becomes

f ′(U j(x))U′j(x) = f ′(U j(x))

[
w j j(x) ∗

[
f ′(U j(x))U′j(x)

]
+

N

∑
k=M+1

wk j(x) ∗ (0)
]

= f ′(U j(x))U′j(x),

and for l 6= j, we have

0 = f ′(Ul(x))

[
wll(x) ∗ [0] +

N

∑
k 6=l; k=M+1

wkl(x) ∗ (0)
]
= 0.
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4.4. NETWORKS WITH MULTIPLE INDEPENDENT MODULES

Thus, taking the inner product of Eq. (4.41) with each function in this M-dimensional

set of nullspace vectors, we have a closed system of independent-evolution equa-

tions for the set of phases (∆1, ..., ∆M):

d∆ j =
[
q j(∆ j) +εv(t)

]
dt + dZ j

t , j = 1, ..., M, (4.43)

where now 〈
(
Z j

t

)2
〉 = D j jt with

q j(∆ j) = ε

∫ π
−π f ′(U j(x))U′j(x)

∫ π
−π h j(y + ∆ j)w j j(x− y) f (U j(y))dydx∫ π
−π f ′(U j(x))U′j(x)2dx

,

D j j = ε
2

∫ π
−π
∫ π
−π f ′(U j(x))U′j(x) f ′(U j(y))U′j(y)C j j(x− y)dydx[∫ π

−π f ′(U j(x))U′j(x)2dx
]2 .

Lastly, to express the phases (∆M+1, ..., ∆N) in terms of (∆1, ..., ∆M), we apply the

eigenvalue equation, Eq. (4.20), we derived in Section 4.2.2. The possible equi-

librium positions (∆1, ..., ∆N) of bumps can be approximated by assuming a zero

eigenvalue λ = 0 in Eq. (4.20) and taking inner products with f ′(U j(x))U′j(x) for

j = 1, ..., N:

∆ j〈 f ′(U j)U′j, U′j〉 =
〈

f ′(U j)U′j,
N

∑
k=1

w jk ∗
[

f ′(Uk)U′k
]
∆k

〉
,

0 =

〈
f ′(U j)U′j,

N

∑
k=1

w jk ∗
[

f ′(Uk)U′k
]
·
[
∆k − ∆ j

]〉
. (4.44)

It can be shown Eq. (4.44) is immediately satisfied for j = 1, ..., M, since w jk(x) ≡ 0

for k 6= j. The remaining (N − M)-dimensional system for (∆M+1, ..., ∆N) can

then be solved algebraically. As the independent phases (∆1, ..., ∆M) determine

the dynamics, we ignore the local impact of noise in the non-independent layers

(∆M+1, ..., ∆N). We now demonstrate this calculation for a 3-layer model with two

independent layers ( j = 1, 2).
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u1

u2

u3

A B C

A B

Figure 4.9: Evolution of bump positions in a N = 3-layer network with only
feedforward connectivity from 1 7→ 3 and 2 7→ 3, so layers 1 and 2 evolve in-
dependently. (A) Numerical simulation of bump evolution in layer 3 overlaid
with bump position from full simulation (magenta line), as well as positions of
the bumps in layer 1 (dark blue) and layer 2 (cyan). Dashed lines are approxi-
mations from low-dimensional system, Eq. (4.43). (B) Variance 〈∆2

j (t)〉 as a func-
tion of time as computed from full numerical simulations (dashed lines), the low-
dimensional approximation (circles), and the effective diffusion calculation (solid
lines), Eq. (4.39). The top curves are for layer 1 (〈∆2

1(t)〉) and the bottom curves
are for layer 3 (〈∆2

3(t)〉), the output layer. While this is a fully feedforward net-
work, the output layer averages the position estimates in layers 1 and 2, reducing
the effective diffusion of the layer 3 bump. Here h1(x) = h2(x) = 0.25 cos(8x)
and h3(x) ≡ 0 with interlaminar connectivity w̄31 = w̄32 = 0.3, and ε = 0.1.
Numerical simulations are performed as described in Fig. 4.7.

Three-layer imploding star. We begin by assuming the constituent functions take

the form w j j(x) = cos(x) ( j = 1, .., 3); h j(x) = σ cos(n jx) ( j = 1, 2); w3 j(x) =

w̄c(1 + cos(x))/2 ( j = 1, 2); and C j j(x) = π cos(x). In this case, the function

q j(∆ j) = −C j sin(n j∆ j)/(2 sin(a)) and D j j = πε2/(4 sin2(a)) ( j = 1, 2) in Eq. (4.43),

with C j defined as in Eq. (4.38). Note that a1 = a2 = a, but a3 6= a, due to synap-

tic input from layers 1 and 2. Thus, using Eq. (4.44), we can solve to find that

∆3(t) = (∆1(t) + ∆2(t))/2, so 〈∆2
3(t)〉 =

[
〈∆2

1(t)〉+ 〈∆2
2(t)〉

]
/4. Both the low-

dimensional approximation, Eq. (4.43), and the resulting variances compare well

with our results from numerical simulation (Fig. 4.9). Also, even though there
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is no recurrence in this network, the fact that the output layer 3 receives two in-

dependent feedforward inputs means its estimate will be a weighted average of

layers 1 and 2. Ultimately, this leads to more robust storage of the initial condition

of the network in the output layer.

4.5 Conclusion

We have carried out a detailed analysis of the stochastic dynamics of bumps in

multilayer neural fields. Importantly, the model incorporated both spatial het-

erogeneities and velocity inputs, to understand how these network features inter-

acted with noise. In the absence of velocity input, we have shown that a bump’s

response to perturbations is shaped by the graph of the interlaminar architecture.

Bumps in layers of the network that receive no feedback from other layers will not

be affected by perturbations to the rest of the network. This lack of feedback to

independent layers means that such feedforward networks are less robust to noise

perturbations, since noise cancelation relies upon the presence of recurrent archi-

tecture [86]. Recurrently coupled networks are more robust to noise perturbations,

especially when layers possess heterogeneity. The most severe heterogeneities

will tend to determine the stability of the entire network’s bump solution in the

presence of noise. However, the stabilizing effect of heterogeneities is disruptive

to velocity integration, since it slows the propagation of velocity-driven bumps.

Interestingly, noise can restore the propagation of bumps, so they move at a speed

close to the input. We also extended this analysis to the case of networks with
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4.5. CONCLUSION

multiple independent layers, showing multiple phase variables are needed to de-

scribe each independent layer’s bump. The non-independent layers are entrained

by the phases of the independent layers. Our work extends previous results on

the impact of noise [19], heterogeneity [17], and velocity input [168] on the dy-

namics of continuum neural fields, to address how multilayer architectures shape

networks’ processing of spatially-relevant inputs.
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Chapter 5
Discussion

Our primary motivation for exploring these models comes from extensive ex-

perimental literature on persistent activity representing spatial working memory

[65, 107]. Particularly pertinent to this work are place cell and grid cell networks,

which track a mammal’s idiothetic position in two-dimensional space as it nav-

igates through its environment [109]. Networks in cortex and hippocampus are

capable of encoding analog spatial variables for time periods lasting seconds up

to tens of minutes on length scales of hundreds of meters [73]. The specific single

neuron and network architectural features that engender this impressive accuracy

are the subject of ongoing research [30].

We have introduced and studied a neural field model that incorporates exter-

nal inputs and additive noise as a model of short term memory in mammals. In

networks with no spatial heterogeneity, noise causes bumps to wander according

to Brownian motion. In the presence of spatially heterogeneous external inputs,
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the stochastic bumps no longer obey dynamics well described by pure diffusion.

Rather, bumps are attracted to the local maxima of the input functions, so their

motion can be approximated by multivariate Ornstein-Uhlenbeck processes. In

Chapter 3, we include a velocity input that results in the propagation of the bump

attractor, whose position encodes an animal’s estimate of its position. Noise can

cause degradation in the memory, which can cause inaccurate memory recollec-

tion. We proposed a novel addition to the model that incorporates the effects of

sensory feedback assuming the distance between an animal’s perceived and ac-

tual position is relatively small.

Finally, in Chapter 4, we showed our analysis need not be limited to a single

network layer. Importantly, the model incorporated both spatial heterogeneities

and velocity inputs, to understand how these network features interacted with

noise. In the absence of velocity input, we have shown that a bump’s response to

perturbations is shaped by the graph of the interlaminar architecture. Recurrently

coupled networks are more robust to noise perturbations, especially when layers

possess heterogeneity. The most severe heterogeneities will tend to determine the

stability of the entire network’s bump solution in the presence of noise. However,

the stabilizing effect of heterogeneities is disruptive to velocity integration, since

it slows the propagation of velocity-driven bumps. Interestingly, noise can restore

the propagation of bumps, so they move at a speed close to the input. We also

extended this analysis to the case of networks with multiple independent layers,

showing multiple phase variables are needed to describe each independent layer’s

bump.
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We note there is also evidence that place cell networks can respond to abrupt

and large changes in an animal’s spatial context [157]. In a study by [83], when an

animal’s spatial reference frame was suddenly switched, network activity could

rapidly adjust to reflect the new context. In some trials, activity flickered between

the two possible environment representations before settling on the new contex-

tual representation. We could extend our model to account for these observa-

tions, by exploring the effects of large and strong sensory feedback cues, which

could lead to such winner-take-all dynamics [87, 135]. There is also recent exper-

imental evidence for discrete, rather than continuous, representations of spatial

position by navigational networks. Studying the dynamics of sharp-wave rip-

ple events in hippocampus, [115] showed that reactivation sequences had activ-

ity reflecting discrete attractors of the underlying network. Rather than evolv-

ing smoothly, neural activity would temporarily sharpen in the vicinity of each

position-representing attractor before transitioning to a spatially discontiguous

location. In this paradigm, theta-frequency or gamma-frequency oscillations of

inhibitory input could temporarily destabilize attractors, allowing neural activity

to traverse the network to subsequent attractors [78, 155]. It would be interest-

ing to consider such modifications to our model and explore how they impact the

robustness of the spatial-position code.

It is important to note that synaptic connections projecting from long-range

axons can be subject to axonal transmission delays, as in the planar neural field

study of Hutt and Rougier [81] and in multi-layer ring models [88]. For simplicity

in our analysis, we only considered instantaneous synaptic connections. In future
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work, we could explore the impact of delays within and between layers of neural

fields when velocity is non-zero. As shown on stationary one-dimensional bump

attractor systems [88], delay tends to stabilize the position of bumps to noise. We

suspect a similar result, wherein diffusion is reduced. However, delay may also

impact the network’s ability to accurately integrate velocity. It would be interest-

ing to derive the underlying dynamics when delay is included.

Finally, we believe our network analysis could be extended to derive the effec-

tive dynamics of more general neural activity. In particular, we expect that similar

analyses could be performed on neural fields that support traveling waves [116]

or Turing patterns [43]. It would be interesting to examine layers that individ-

ually support Turing patterns with different dominant frequencies, to see how

interlaminar coupling impacts the onset of pattern-formation and the frequency

of the emerging pattern. We are also interested in extending this framework to

multilayer networks whose individual layers support different classes of solution.

For example, we could consider a network comprised of two layers wherein one

layer supports bump attractors and the other supports stationary front solutions.

In the case of excitatory feedforward input from the bump to the front layer, the

front would expand only in response to the motion of the bump. Such a network

could provide robust storage of visited locations during memory-guided visual

search [36] or spatial navigation [68].
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Appendix A
Two Ring Reduction Analysis

In Eq. (4.1) and in previous work [118], we present a model with a spatially

asymmetric-weight function whose amplitude represents velocity input. Varying

this input leads to a proportional rise in the velocity of moving bumps generated

in the corresponding network. This single-layer network is a linear reduction of

a “double-ring” network, analyzed in detail in [164]. Originally developed as a

model of the head-direction system, the rings of the double-ring network each

prefer either rightward or leftward velocity inputs. However, similar network ar-

chitectures have been used to model the dynamics of activity in the brain’s spatial

navigation system [30], as we consider here. We now demonstrate a reduction

of the double-ring network to a single-ring network where inputs are given as a

pre-factor to an integral term with asymmetric coupling, as in [118]. In Section B,

we show how this reduction extends to a two-layer network, where each layer is

a reduction of a “double-ring.”
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We consider a slight variation on the model used in [164], so the nonlinearity

filtering synaptic input is within, rather than outside, the convolution integrals.

Note, it is typically possible to perform a mapping between such models [19]. In

a double-ring model, there are two synaptic input variables uL(x, t) and uR(x, t),

for leftward and rightward preferring velocity populations respectively, subject to

the evolution equations

∂uL

∂t
= −uL + w+φ ∗ f (uL(x, t)) + w−φ ∗ f (uR(x, t)) + I(t), (A.1a)

∂uR

∂t
= −uR + w+φ ∗ f (uL(x, t)) + w−φ ∗ f (uR(x, t))− I(t), (A.1b)

where the nonzero shift φ > 0 in either weight function w±φ := w(x ±φ) is

crucial for generating traveling bumps in the input driven system (I(t) 6= 0). Note

that the function w(x) = w(−x) is a typical even-symmetric, lateral-inhibitory

weight kernel, as described in Section 4.1. Symmetric, stationary bump solutions

uL,R(x, t) = U(x) to Eq. (A.1) are given by the equation:

U(x) = w̄(x) ∗ f (U(x)), w̄(x) = w(x +φ) + w(x−φ), (A.2)

where w̄(x) is an even symmetric function, since w̄(−x) = w(−x +φ) + w(−x−

φ) = w(x−φ) + w(x +φ) = w̄(x). Input I 6= 0 is converted to bump velocity,

which can be demonstrated by assuming |I(t)| � 1 and linearizing Eq. (A.1)

using the ansatz, u j(x, t) = U(x− X(t)−ψ j) +εΦ j(x, t) +O(ε2) ( j = L, R):

∂

∂t

 ΦL(x, t)

ΦR(x, t)

 = L

 ΦL(x, t)

ΦR(x, t)

+

 εv(t)U′(x) + I(t)

εv(t)U′(x)− I(t)

 , (A.3)

142



where εv(t) = Ẋ(t) is the bump’s velocity, and the linear operator

L

 ΦL

ΦR

 =

 −ΦL + w+φ ∗ [ f ′(U)ΦL] + w−φ ∗ [ f ′(U)ΦR]

−ΦR + w+φ ∗ [ f ′(U)ΦL] + w−φ ∗ [ f ′(U)ΦR]

 .

For solutions to Eq. (A.3) to be bounded, we require the inhomogeneous portion

to be orthogonal to the nullspace of the adjoint linear operator, defined as

L∗
 ΨL

ΨR

 =

 −ΨL + f ′(U) · w+φ ∗ [ΨL + ΨR]

−ΨR + f ′(U) · w−φ ∗ [ΨL + ΨR]

 ≡
 0

0

 .

This leads to the following equation for the dependence of the bumps’ velocity

εv(t) on the input I(t):

εv(t) =
〈I(t), ΨL(x)− ΨR(x)〉
〈U′(x), ΨL(x) + ΨR(x)〉 .

Thus, there is a proportional increase in the velocity εv(t) corresponding to an

increase in the input I(t), to linear order. By differentiating Eq. (A.2), we see a

solution to Eq. (A.3) is ΦL,R(x, t) = U′(x). Thus, up to O(ε2), we can approxi-

mate uL,R(x, t) ≈ U(x− X(t)−ψL,R). Dropping subscripts on the u j ( j = L, R)

formulae and differentiating with respect to t, we find

∂u(x, t)
∂t

= −εv(t)U′(x− X(t) +ψ), (A.4)

and we can further incorporate the formula for the stationary bump by replacing

U(x − X(t) −ψ) with u(x, t) in Eq. (A.2), and adding the equation to Eq. (A.4).

Subsequently, a differentiation of that formula, with U(x − X(t) − ψ) replaced

with u(x, t) means the U′(x− X(t)−ψ) in Eq. (A.4) can also be replaced to yield

∂u(x, t)
∂t

= −u + w̄ ∗ f (u)−εv(t)
[
w̄′
]
∗ f (u), (A.5)

so Eq. (A.5) describes the dynamics of Eq. (A.1) to linear order in I(t).
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Appendix B
Reduction in Multiple Dimensions

The double-ring model, Eq. (A.1), can be extended to the case of two layers (of

double-rings), each receiving independent velocity-producing inputs. Now, there

are four synaptic input variables (uL1, uR1, uL2, uR2), where u jk corresponds to the

variable in the kth layer preferring j (L : left or R : right)-ward velocity. These are

subject to the evolution equations

u̇L1 = −uL1 + w+φ ∗ [ f (uL1) +αc f (uL2)] + w−φ ∗ [ f (uR1) +αc f (uR2)] + I, (B.1)

u̇R1 = −uR1 + w+φ ∗ [ f (uL1) +αc f (uL2)] + w−φ ∗ [ f (uR1) +αc f (uR2)]− I,

u̇L2 = −uL2 + w+φ ∗ [ f (uL2) +αc f (uL1)] + w−φ ∗ [ f (uR2) +αc f (uR1)] + I,

u̇R2 = −uR2 + w+φ ∗ [ f (uL2) +αc f (uL1)] + w−φ ∗ [ f (uR2) +αc f (uR1)]− I,

where again the nonzero shift φ > 0 causes bumps to travel when I 6= 0, and αc

represents the coupling between layers 1 and 2. Since w(x) = w(−x) is even, there

are symmetric, stationary bump solutions u jk(x, t) = U(x) ( j = L, R, k = 1, 2) to
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Eq. (B.1), given by:

U(x) = (1 +αc)w̄(x) ∗ f (U(x)), w̄(x) = w(x +φ) + w(x−φ), (B.2)

and note w̄(x) is even. When |I(t)| � 1, we linearize Eq. (B.1) assuming u jk(x, t) =

U(x− X(t)−ψ jk) +εΦ jk(x, t) +O(ε2) for j = L, R and k = 1, 2:

(
∂

∂t
−L

)


ΦL1(x, t)

ΦR1(x, t)

ΦL2(x, t)

ΦR2(x, t)


=



εv(t)U′(x) + I(t)

εv(t)U′(x)− I(t)

εv(t)U′(x) + I(t)

εv(t)U′(x)− I(t)


, (B.3)

where εv(t) = Ẋ(t) is the bumps’ velocity, and the linear operator

L (Φ) = −Φ+



w+φ ∗ [ f ′(U) (ΦL1 +αcΦL2)] + w−φ ∗ [ f ′(U) (ΦR1 +αcΦR2)]

w+φ ∗ [ f ′(U) (ΦL1 +αcΦL2)] + w−φ ∗ [ f ′(U) (ΦR1 +αcΦR2)]

w+φ ∗ [ f ′(U) (ΦL2 +αcΦL1)] + w−φ ∗ [ f ′(U) (ΦR2 +αcΦR1)]

w+φ ∗ [ f ′(U) (ΦL2 +αcΦL1)] + w−φ ∗ [ f ′(U) (ΦR2 +αcΦR1)]


where Φ = (ΦL1, ΦR1, ΦL2, ΦR2). For solutions to Eq. (B.3) to be bounded, we

require the right hand side to be orthogonal to the nullspace of L∗, defined:

L∗ (Ψ) = −Ψ+



f ′(U) · w+φ ∗ [ΨL1 + ΨR1 +αc (ΨL2 + ΨR2)]

f ′(U) · w−φ ∗ [ΨL1 + ΨR1 +αc (ΨL2 + ΨR2)]

f ′(U) · w+φ ∗ [ΨL2 + ΨR2 +αc (ΨL1 + ΨR1)]

f ′(U) · w−φ ∗ [ΨL2 + ΨR2 +αc (ΨL1 + ΨR1)]


≡ 0.

with Ψ = (ΨL1, ΨR1, ΨL2, ΨR2). This leads to the following linear equation, relat-

ing εv(t) to I(t):

εv(t) =
〈I(t), ΨL1(x) + ΨL2(x)− ΨR1(x)− ΨR2(x)〉
〈U′(x), ΨL1(x) + ΨL2(x) + ΨR1(x) + ΨR2(x)〉 .
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Lastly, noting Φ jk(x, t) = U′(x) solves Eq. (B.3), we can approximate u jk ≈ U(x−

X(t) −ψ jk) ( j = L, R and k = 1, 2) up to O(ε2). Dropping the subscripts and

differentiating with respect to t, we again find Eq. (A.4). Next, replacing U(x −

X(t)−ψ) with u(x, t) in Eq. (B.2) and adding to Eq. (A.4) as well as plugging this

equation in for U′(x− X(t)−ψ) yields

∂u(x, t)
∂t

= −u + (1 +αc)w̄ ∗ f (u)−εv(t)(1 +αc)
[
w̄′
]
∗ f (u). (B.4)

Note, in the case of asymmetric coupling between either double ring, we would

expect two distinct forms of Eq. (B.4), where w̄′ was different for either. This

full asymmetry for an arbitrary number of layers is captured by the asymmetric-

weight functions given by Eqs. (4.1) and (4.5).
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Flogel. Functional specificity of local synaptic connections in neocortical

networks. Nature, 473(7345):87–91, 2011.

[96] A.A. Koulakov, S. Raghavachari, A. Kepecs, and J.E. Lisman. Model for a

robust neural integrator. Nature Neuroscience, 5(8):775–782, 2002.

[97] J. Kruger and W. Stannat. Front propagation in stochastic neural fields: A

rigorous mathematical framework. SIAM Journal on Applied Dynamical Sys-

tems, 13(3):1293–1310, 2014.

[98] C. Kuehn and M.G. Riedler. Large deviations for nonlocal stochastic neural

fields. Journal of Mathematical Neuroscience, 4(1):1–33, 2014.

[99] C.R. Laing and C.C. Chow. Stationary bumps in networks of spiking neu-

rons. Neural Computation, 13(7):1473–1494, 2001.

159



BIBLIOGRAPHY

[100] C.R. Laing and A. Longtin. Noise-induced stabilization of bumps in systems

with long-range spatial coupling. Physica D, 160(3-4):149 – 172, 2001.

[101] C.R. Laing and W.C. Troy. Pde methods for nonlocal models. SIAM Journal

on Applied Dynamical Systems, 2(3):487–516, 2003.

[102] C.R. Laing, W.C. Troy, B. Gutkin, and B. Ermentrout. Multiple bumps in a

neuronal model of working memory. SIAM Journal on Applied Mathematics,

63(1):62–97, 2002.

[103] I. Lee, D. Yoganarasimha, G. Rao, and J.J. Knierim. Comparison of popula-

tion coherence of place cells in hippocampal subfields ca1 and ca3. Nature,

430(6998):456–459, 2004.

[104] S. Lim and M.S. Goldman. Balanced cortical microcircuitry for maintaining

information in working memory. Nature Neuroscience, 16(9):1306–1314, 2013.

[105] B. Lindner, M. Kostur, and L. Schimansky-Geier. Optimal diffusive trans-

port in a tilted periodic potential. Fluctuation and Noise Letters, 1(01):R25–

R39, 2001.

[106] A. Longtin. Stochastic resonance in neuron models. Journal of Statistical

Physics, 70(1-2):309–327, 1993.

[107] B.L. McNaughton, F.P. Battaglia, O. Jensen, E.I. Moser, and M. Moser. Path

integration and the neural basis of the ‘cognitive map’. Nature Reviews Neu-

roscience, 7(8):663–678, 2006.

160



BIBLIOGRAPHY

[108] B.L. McNaughton, L. Chen, and E.J. Markus. “Dead reckoning,” landmark

learning, and the sense of direction: a neurophysiological and computa-

tional hypothesis. Journal of Cognitive Neuroscience, 3(2):190–202, 1991.

[109] E.I. Moser, E. Kropff, and M. Moser. Place cells, grid cells, and the brain’s

spatial representation system. Annual Review of Neuroscience, 31:69–89, 2008.

[110] W.J. O’brien, H.I. Browman, and B.I. Evans. Search strategies of foraging

animals. American Scientist, 78(2):152–160, 1990.

[111] J. O’Keefe and N. Burgess. Geometric determinants of the place fields of

hippocampal neurons. Nature, 381(6581):425–8, 1996.

[112] M.R. Owen, C.R. Laing, and S. Coombes. Bumps and rings in a two-

dimensional neural field: splitting and rotational instabilities. New Journal

of Physics, 9(10):378, 2007.

[113] D. Panja. Effects of fluctuations on propagating fronts. Physics Reports,

393(2):87–174, 2004.

[114] B. Pesaran, J.S. Pezaris, M. Sahani, P.P. Mitra, and R.A. Andersen. Temporal

structure in neuronal activity during working memory in macaque parietal

cortex. Nature Neuroscience, 5(8):805–811, 2002.

[115] B.E. Pfeiffer and D.J. Foster. Autoassociative dynamics in the generation of

sequences of hippocampal place cells. Science, 349(6244):180–183, 2015.

[116] D.J. Pinto and B. Ermentrout. Spatially structured activity in synaptically

161



BIBLIOGRAPHY

coupled neuronal networks: I. traveling fronts and pulses. SIAM Journal on

Applied Mathematics, 62(1):206–225, 2001.

[117] D.B. Poll and Z.P. Kilpatrick. Stochastic motion of bumps in planar neural

fields. SIAM Journal on Applied Mathematics, 75(4):1553–1577, 2015.

[118] D.B. Poll, K. Nguyen, and Z.P. Kilpatrick. Sensory feedback in a bump

attractor model of path integration. Journal of Computational Neuroscience,

40(2):137–155, 2016.

[119] X. Qi, T. Meyer, T.R. Stanford, and C. Constantinidis. Changes in prefrontal

neuronal activity after learning to perform a spatial working memory task.

Cerebral Cortex, 21(12):2722–2732, 2011.

[120] S.G. Rao, G.V. Williams, and P.S. Goldman-Rakic. Isodirectional tuning of

adjacent interneurons and pyramidal cells during working memory: evi-

dence for microcolumnar organization in pfc. Journal of Neurophysiology,

81(4):1903–1916, 1999.

[121] A. Renart, N. Brunel, and X. Wang. Mean-field theory of irregularly spik-

ing neuronal populations and working memory in recurrent cortical net-

works. In Computational Neuroscience: A Comprehensive Approach, pages 431–

490. Boca Raton, CRC Press, 2004.

[122] A. Renart, P. Song, and X. Wang. Robust spatial working memory through

homeostatic synaptic scaling in heterogeneous cortical networks. Neuron,

38(3):473–485, 2003.

162



BIBLIOGRAPHY

[123] C. Ribrault, K. Sekimoto, and A. Triller. From the stochasticity of molec-

ular processes to the variability of synaptic transmission. Nature Reviews

Neuroscience, 12(7):375–387, 2011.

[124] H. Risken. Fokker-planck equation. In The Fokker-Planck Equation, pages

63–95. Springer, 1984.

[125] J.B. Rowe, I. Toni, O. Josephs, R.S.J. Frackowiak, and R.E. Passingham. The

prefrontal cortex: response selection or maintenance within working mem-

ory? Science, 288(5471):1656–1660, 2000.

[126] F. Sagués, J.M. Sancho, and J. Garcı́a-Ojalvo. Spatiotemporal order out of

noise. Reviews of Modern Physics, 79(3):829, 2007.

[127] A. Samsonovich and B.L. McNaughton. Path integration and cognitive

mapping in a continuous attractor neural network model. The Journal of

Neuroscience, 17(15):5900–5920, 1997.

[128] B. Sandstede. Stability of travelling waves. Handbook of Dynamical Systems,

2:983–1055, 2002.

[129] F. Sargolini, M. Fyhn, T. Hafting, B.L. McNaughton, M.P. Witter, M. Moser,

and E.I. Moser. Conjunctive representation of position, direction, and veloc-

ity in entorhinal cortex. Science, 312(5774):758–762, 2006.

[130] E. Save, L. Nerad, and B. Poucet. Contribution of multiple sensory informa-

tion to place field stability in hippocampal place cells. Hippocampus, 10:64–

76, 2000.

163



BIBLIOGRAPHY

[131] D. Schluppeck, C.E. Curtis, P.W. Glimcher, and D.J. Heeger. Sustained activ-

ity in topographic areas of human posterior parietal cortex during memory-

guided saccades. The Journal of Neuroscience, 26(19):5098–5108, 2006.

[132] E. Schneidman, W. Bialek, and M.J. Berry. Synergy, redundancy, and in-

dependence in population codes. The Journal of Neuroscience, 23(37):11539–

11553, 2003.

[133] I. Sendiña-Nadal, S. Alonso, V. Pérez-Muñuzuri, M. Gómez-Gesteira,
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